
1 Premilinaries

Fuzzy set theory and fuzzy logic is viewed as a generalisation of ordinary set
theory and logic. To this vein, we will �rst explore set theory and logic in a
slightly rigourous fashion so that when we consider its generalisation, we do not
end up feeling lost in a technical jargon but are, rather, able to relate directly
to our previous concepts.

1.1 Propositional Logic

Propositional Logic of �rst order PL(1) consists of syntax (grammar), semantics
(meaning), inference rules and derivation. A rule of inference, inference rule,
or transformation rule is a logical form consisting of a function which takes
premises, analyzes their syntax, and returns a conclusion (or conclusions). For
example, the rule of inference called modus ponens takes two premises, one in
the form "If p then q" and another in the form "p", and returns the conclusion
"q". A derivation, on the other hand, is the conclusion of the argument via
inference.
PL can be viewed as a language of human reasoning and this language is

based on alphabets i.e. symbols
The alphabets or primitive symbols of PL consist of
a) Propositional variables denoted by p; q; r; s; t; :::
b) Constants denoted by T and C
c) Connectives denoted by _;^; N !;$, respectively called disjunction,

conjunction, negation, conditional and biconditional
Just as in any language, syntax or grammar is used to generate sentences.

In PL too, syntax is used to generate well-formed formulae (WFFs) which are
analogous to sentences. The WFFs are characterised recursively or inductively
as follows:
a) All propositional variables and constants are WFFs (called primitive

WFFs)
b) The negation of a WFF is a WFF
c) Disjunction, conjunction, conditional and biconditional of a pair of WFFs

is also a WFF
d) All WFFs are obtained by the above three procedures applied for a �nite

number of times.

Remark 1 The connective N will be used as pre�x before a propositional symbol
or WFF

Remark 2 All other connectives will be used as in�x between a pair of WFFs
or symbols

Remark 3 For clarity of understanding, we use certain extra symbols that are
not part of the alphabets of PL(1). These symbols will be called meta-symbols.
Some of them are brackets.
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Example 4 p; p _ q; p ^ q;Np; p! q; p$ q are WFFs

Example 5 p_; pN; pq; pq !;^p are not WFFs

1.1.1 Semantics of PL(1)

Just as there is a dictionary for words, phrases and sentences of a natural lan-
guage, giving their meaning, analogously, we talk of semantics of WFFs in
PL(1). The dictionary of PL(1) is concise and compact as every primitive WFF
can have only one of the two meanings � true or false. Given a WFF F , an
interpretation of F is the assignment of one of the two values �true or false �
to each propositional symbol, occuring in F . More generally, given a �nite set
S of WFFs, an interpretation of S is the assignment of one of the two values �
true or false �to each propositional symbol occurring in each WFF F in S.

Remark 6 For a single propositional symbol p, there are only 2 interpretations,
T and F .

Remark 7 For a pair of propositional symbols, there are exactly 4 interpreta-
tions. In general, for a WFF with n propositional symbols, there are 2n possible
interpretations.

Remark 8 The meaning of T (tautology) and C (contradiction) are �xed. T is
always true and C is always false.

De�nition 9 A valuation of a WFF F associated with an interpretation, called
the meaning of F , is the truth value of F

Example 10 Consider the WFF F := [(p ^ q)! r]! [p ^ (q ! r)]
p q r p ^ q (p ^ q)! r (q ! r) p ^ (q ! r) F
1 1 1 1 1 1 1 1
1 1 0 1 0 0 0 1
1 0 1 0 1 1 1 1
1 0 0 0 1 1 1 1
0 1 1 0 1 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 1 0 0
0 0 0 0 1 1 0 0

Remark 11 A WFF is said to be valid in an interpretation I if it is true in I

Remark 12 A �nite set S of WFFs is said to be valid in an interpretation I
if each WFF of S is valid in I

Remark 13 A WFF F is said to be valid if it is valid in every possible inter-
pretation of F

Remark 14 A �nite set S of WFFs is said to be valid if every WFF of S is
valid in every possible interpretation of F
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Remark 15 Two WFFs, F and G, are said to be equivalent, written F � G,
if the WFF F $ G is valid.

Example 16 p! q � Np _ q
p q Np p! q Np _ q (p! q)$ (Np _ q)
1 1 0 1 1 1
1 0 0 0 0 1
0 1 1 1 1 1
0 0 1 1 1 1

Exercise 17 Show that N (p! q) � p ^Nq

Solution 18

p q p! q N (p! q) Nq p ^Nq N (p! q)$ p ^Nq
1 1 1 0 0 0 1
1 0 0 1 1 1 1
0 1 1 0 0 0 1
0 0 1 0 1 0 1

Exercise 19 Show that p$ q � (Np _ q)_ (p _Nq) � (p ^ q)_ [(Np) ^ (Nq)]

Solution 20 Let (p ^ q) _ [(Np) ^ (Nq)] = G and (Np _ q) _ (p _Nq) = F
p q p$ q Np Np _ q Nq p _Nq F (p$ q)$ F
1 1 1 0 1 0 1 1 1
1 0 0 0 0 1 1 0 1
0 1 0 1 1 0 0 0 1
0 0 1 1 1 1 1 1 1
p q Np Nq p ^ q (Np) ^ (Nq) G p$ q (p$ q)$ G
1 1 0 0 1 0 1 1 1
1 0 0 1 0 0 0 0 1
0 1 1 0 0 0 0 0 1
0 0 1 1 0 1 1 1 1

1.2 Predicate Logic

Predicate logic PL(2) is a natural extension of propositional logic PL(1). PL(1)
deals with WFFs that do not involve variables whereas PL(2) deals with WFFs
involving variables

1.2.1 Syntax of PL(2)

The syntax of PL(2) consists of the symbol set of alphabets and rules. The
alphabets of PL(2) consist of
a) Constants a; b; c; :::
b) Variables x; y; z; :::
c) Truth symbols T and C
d) Predicate symbols P;Q;R; ::
e) Function symbols f; g; h; :::
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f) Connectives _;^; N !;$
g) Quanti�ers: the inverted E, 9, called the existential quanti�er, pronounced

as "there exist", "for some", "at least one" and the inverted A, 8, called the
universal quanti�er, pronounced as "for all", "for every" and "for each".
Notice that in this case, we have only two truth valuations. That is, I2 =

f0; 1g. Now, we start with U having values in I3 = f0; 1=2; 1g. This is 3-valued
logic. This leads to a new kind of set theory, namely the 3-valued set-theory
but will be of little interest to us in our fuzzy considerations. For now, here are
some details:
Let F (U) be the set of all functions from U to I3. We want to de�ne 3

operations: union, intersection and complementation on F (U)

u 0 1/2 1
0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

and

m 0 1/2 1
0 0 0 0
1/2 0 1/2 1/2
1 0 1/2 1

where u = max (a; b), m = min (a; b) and c (a) = 1� a

1.3 Basic Set Theory

This part will assume familiarity with functions, sets and set operations in
general including the Cartesian product, union and intersection and its variants
and (binary) relations. Generalisation of the union and intersections are studied
in the later part of this chapter whereas a rigorour introduction to Order Theory
and Lattice Theory is o¤ered in the next.

De�nition 21 Let U be a �xed non-empty universal set. The function f :
U �!f0; 1g is called a characteristic function or indicator function of U .

Given any characteristic function f , we can associate a unique subset A of
U , namely Af = fx 2 U : f (x) = 1g
Conversely, given any subset A of U , we can associate a unique characterisitic

function f on U namely

fA (x) =

�
1 if x 2 A
0 if x 62 A

This acts as the Boolean operator "belongs to is true" and "belongs to is
false".

Theorem 22 If A and B are subsets of U , then

1. fA[B = max (fA; fB)

2. fA\B = min (fA; fB)

3. fAc = 1� fA
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Proof. fA[B (x) =
�

1 if x 2 A or B
0 if x 62 either A or B

Consider the following cases:
1. fA (x) = 1 and fB (x) = 0, then, fA[B (x) = 1
2. fA (x) = 0 and fB (x) = 1, then, fA[B (x) = 1
3. fA (x) = 0 and fB (x) = 0, then, fA[B (x) = 0
4. fA (x) = 1 and fB (x) = 1, then, fA[B (x) = 1
In all such cases, the de�nition max (fA; fB) coincides with fA[B
The proof of part 2 is similar
For part three, consider only the two cases for fA (x) = 1 and 0

Exercise 23 Let f and g be characteristic functions on U . De�ne the binary
operation ! by

f ! g =

�
0 if f = 1 and g = 0

1 otherwise

a) Write down the table for !
b) Prove that f ! g is a characteristic function on U

c) Prove that f ! g = max (Nf; g) where Nf =
�

0 if f = 1
1 otherwise

d) If A = fx 2 U jf (x) = 1g and B = fx 2 U jg (x) = 1g, prove that "f !
g = 1" if and only if A � B

Solution 24 a)

f g f ! g
1 1 1
1 0 0
0 1 1
0 0 1

b) We have

(f ! g) (x) =

�
0 if f (x) = 1 and g (x) = 0

1 otherwise

The domain of (f ! g) (x) relies on the domain of both f and g, which is U .
The range is f0; 1g
c) This can be done by considering every single case for f and g.
d) ( =) ) Let f ! g = 1. We will have three di¤erent cases.
Case I
f (x) = 1 and g (x) = 1
We can rephase this as "if f(x) = 1; then g (x) = 1" which gives us A � B
Case II
f (x) = 0 and g (x) = 1
If f (x) = 0 , then we have the empty set since f (x) = 0 for any x 2 U .

Since the empty set is trivially the subset of everyset, therefore A � B
Case III
f (x) = 0 and g (x) = 0.
If g (x) = 0, then f (x) = 0. That is, if x 62 B, then x 62 A. Hence,

Bc � Ac () A � B
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((= ) If A � B, then for x 2 A, we have x 2 B. Hence, f (x) = 1
implies g (x) = 1. Thus, (f ! g) (x) = 1. Since this is valid for any x, we have
f ! g = 1

If S and R are binary relations from A to B and from B to C, respectively.
Show that the function fS�R (a; c) = max fmin ffS (a; b) ; fR (b; c)g b 2 Bg. To
prove that fS�R is indeed a characterisitic function, one needs to show that
the range of fS�R is f0; 1g and that the domain of fS�R is U � U : The set
S � R := f(a; c) j 9b s.t (a; b) 2 S and (b; c) 2 Rg. This makes sense because if
fS (a; b) = 1, then (a; b) 2 S and fR (b; c) = 1, then (b; c) 2 R. Hence, we can
collect all such a0s and c�s and form the set f(a; c) j a 2 A and c 2 Cg with a
characteristic function called fS�R. In the de�nition, even if we have one b 2 B
such that (a; b) 2 S and (b; c) 2 R, then the maximum value of all (a; b) and
(b; c) for varying b will be 1: If no such b is found, then the value will be 0. The
minimum function guarantees that both fS (a; b) and fR (b; c) = 1, that is, we
do have (a; b) 2 S and (b; c) 2 R to begin with. The range is then clearly f0; 1g
and the domain clearly the cartesian product U � U .
Before we move any further, a de�nition is in order. _ is a binary function

such that _ (x; y) = x _ y = sup fx; yg and ^ (x; y) = x ^ y = inf fx; yg. More
details about this under the discussion of lattices.

Proposition 25 Let I2 = f0; 1g and Ch(U) be the set of characteristic func-
tions on universal set U . Then, f; g 2 Ch (U) =) f _ g, f ^ g;Nf 2 Ch (U)

Proof. De�ne (f _ g) (x) = f (x) _ g (x), (f ^ g) (x) = f (x) ^ g (x) and

Nf (x) =

�
1 if f (x) = 0
0 if f (x) = 1

If A = fx j f (x) = 1g and B = fx j g (x) = 1g, then f _ g; f ^ g; Nf construct
the sets A [ B, A \ B and Ac, respectively so that they do, indeed, form
charactersitic functions.
Note that f (x) _ g (x) can be de�ned in a multitude of ways. For instance,

max (f (x) ; g (x)) ; f (x) + g (x)� f (x) g (x). Similarly, (f ^ g) (x) might corre-
spond to min (f (x) ; g (x)), f (x) g (x)

De�nition 26 Let I2 = f0; 1g. Then, u : I2� I2 �! I2; m : I2� I2 �! I2 and
c : I2 �! I2 such that u (a; b) = a+ b� ab and m (a; b) = ab and c (a) = 1� a
are called the union, meet and complement operators.

Proposition 27 u (a; a) = a

Proof. Proof by exhaustion
u (1; 1) = 1 + 1� 1 = 1
u (0; 0) = 0 + 0� 0 = 0

Proposition 28 m (a; a) = a
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Proof. Proof by exhaustion
m (1; 1) = (1) (1) = 1
m (0; 0) = (0) (0) = 0

Proposition 29 u (a; b) = u (b; a)

Proof. u (a; b) = a+ b� ab = b+ a� ba = u (a; b)

Proposition 30 m (a; b) = m (b; a)

Proof. m (a; b) = ab = ba = m (a; b)

Proposition 31 u (a; u (b; c)) = u (u (a; b) ; c)

Proof. u (a; u (b; c)) = a+ u (b; c)� au (b; c) =
= a+ (b+ c� bc)� a (b+ c� bc)
= a+ b+ c� bc� ab� ac+ abc
= (a+ b)� ab+ c� c (a+ b� ab)
= u (a; b) + c� cu (a; b)
= u (u (a; b) ; c)

Proposition 32 m (a;m (b; c)) = m (m (a; b) ; c)

Proof. m (a;m (b; c)) = a (bc) = (ab) c = m (m (a; b) ; c)

Proposition 33 u (a;m (b; c)) = m (u (a; b) ; u (a; c))

Proof. u (a;m (b; c)) = u (a; bc)
= a+ bc� abc
= a2 + bc� abc� ab+ ab+ ac� ac+ abc� abc
= a2 + ac� a2c+ ba+ bc� abc� a2b� abc+ a2bc
= (a+ b� ab) (a+ c� ac)
= u (a; b)u (a; c)
= m (u (a; b) ; u (a; c))

Proposition 34 m (a; u (b; c)) = u (m (a; b) ;m (a; c))

Proof. m (a; u (b; c)) = au (b; c)
= a (b+ c� bc) = ab+ ac� abc
= ab+ ac� a2bc
= ab+ ac� abac
= m (a; b) +m (a; c)�m (a; b)m (a; c)
= u (m (a; b) ;m (a; c))

Proposition 35 u (a;m (a; b)) = a
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Proof. u (a;m (a; b)) = a+m (a; b)� am (a; b)
= a+ ab� aab
= a+ ab� ab = a

Proposition 36 m (a; u (a; b)) = a

Proof. m (a; u (a; b)) = au (a; b)
= a (a+ b� ab)
= a2 + ab� a2b
= a+ ab� ab = a

Proposition 37 u (a; 1) = 1

Proof. a+ 1� a1
= a+ 1� a = 1

Proposition 38 u (a; 0) = a

Proof. a+ 0� a0 = a

Proposition 39 m (a; 1) = a

Proof. a1 = a

Proposition 40 m (a; 0) = 0

Proof. a0 = 0

Proposition 41 c (c (a)) = a

Proof. 1� (1� a)
= 1� 1 + a = a

Proposition 42 c (0) = 1

Proof. c (0) = 1� 0 = 1

Proposition 43 c (1) = 0

Proof. c (1) = 1� 1 = 0

Proposition 44 c (u (a; b)) = m (c (a) ; c (b))

Proof. c (u (a; b)) = 1� u (a; b)
= 1� a� b+ ab
= (1� a)� b (1� a)
= (1� a) (1� b) = m (c (a) ; c (b))

Proposition 45 c (m (a; b)) = u (c (a) ; c (b))
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Proof. c (m (a; b)) = 1� ab
= 1 + 1� 1� a� b+ a+ b� ab
= (1� a) + (1� b)� 1 + b+ a� ab
= (1� a) + (1� b)� (1� a) (1� b)
= u (c (a) ; c (b))

Proposition 46 u (a; c (a)) = 1

Proof. a+ 1� a� (1� a) (a)
= 1� a+ a2
= 1� a+ a = 1

Proposition 47 m (a; c (a)) = 0

Proof. a (1� a) = a� a2 = a� a = 0
We can generalise m and u a little further. A corresponding generalisation

of u is as follows:

De�nition 48 A binary operation 4 : f0; 1g�f0; 1g �! f0; 1g is a t-norm if
it satis�es the following:
a) 14 x = x
b) x4 y = y4 x
c) x4 (y4 z) = (x4 y)4 z
d) w � x and y � z implies w4 z � x4 y

Proposition 49 04 x = 0

Proof. Trivially, 04 x � 0. Since 0 � x and 0 � 1, then 04 x � 04 1 = 0.
That is, 04x � 0. Combining the two inequalities, the proof is established.

Example 50 x40 y =

�
x ^ y if x _ y = 1
0 otherwise

Example 51 x41 y = 0 _ (x+ y � 1)

Example 52 x42 y =
xy

2�(x+y�xy)

Example 53 x43 y = xy

Example 54 x44 y =
xy

x+y�xy

Example 55 x45 y = x ^ y

Proposition 56 For any t-norm 4, 40 � 4 � 45

Proof. Case I, x _ y = 1
x40 y = x ^ y � x
Similarly x40 y = x ^ y � y
Together, x40 y = (x40 y)4 (x40 y) � x4 y � x4 1 = x
Similarly, x40 y � x4 y � y
Together, 40 � 4 � 45

Case II x _ y = 0
In this case, x = y = 0 so that the inequality trivially holds.
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De�nition 57 A t-norm 4 is convex if whenever x4 y � c � x1 4 y1, then
there is an r between x and x1 and s between y and y1 such that c = r4 s

We will move to a more detailed generalisation of m when we consider fuzzy
sets. For now, this de�nition is all that will be o¤ered.

1.4 Order Theory

De�nition 58 Let A be a non-empty subset and R � A � A be a relation. R
is re�exive if (a; a) 2 R for all a 2 A. A relation R is called symmetric if
(x; y) 2 R implies (y; x) 2 R. R is called transitive if (x; y) 2 R and (y; z) 2 R
implies (x; z) 2 R. A relation obeying all three is called an equivalence relation.

Exercise 59 Let R be a binary relation on A and 4 = f(a; a) j a 2 Ag. Show
that 4 is re�exive and that R is re�exive if and only if 4 � R

Solution 60 Since 4 is a collection of (a; a) for a 2 A, the relation 4 is
trivially re�exive.
( =) ) (a; a) 2 4 =) (a; a) 2 R since R is re�exive.
((= ) If (a; a) 2 4 � R implies (a; a) 2 R, which implies R is re�exive.

Exercise 61 Let R be a binary relation on A and de�ne Inv (R) = f(y; x) j (x; y) 2 Rg.
Show that R is symmetric if and only if Inv (R) � R

Solution 62 ( =) ) (y; x) 2 Inv (R) implies (x; y) 2 R by de�nition and
(y; x) 2 R by symmetricity of R.
((= ) Let (x; y) 2 R. Then, Inv (R) � R implies that (y; x) 2 Inv (R)

which implies and (y; x) 2 R

Exercise 63 Show that R is transitive if and only if R �R � R

Solution 64 ( =) ) Let (x; z) 2 R�R. Then, there exist y such that (x; y) 2 R
and (y; z) 2 R, which implies (x; z) ; (x; y) 2 R since R is transitive.

((= ) If (x; y) 2 R and (y; z) 2 R, we have (x; z) 2 R � R =) (x; z) 2 R
since R �R � R by hypothesis.

De�nition 65 A partition of a set X is a set P of cells or blocks that are
subsets of X such that
1. If C 2 P then C 6= ?
2. If C1; C2 2 P and C1 6= C2 then C1 \ C2 = ?
3. If a 2 X there exists C 2 P such that a 2 C

De�nition 66 If R is an equivalence relation on X, the equivalence class of
a 2 X is the set [a] = fb 2 X j R(a; b)g

Lemma 67 [a] = [b] () R(a; b)
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Proof. ( =) )
Trivial
((= )
R(a; b) and assume [a] 6= [b]. Then, [a] \ [b] = ? =) /R(a; b)

Theorem 68 The set of all equivalence classes under relation R form a parti-
tion of X, called X=R

Proof. [a] 2 X=R, then R(a; a) =) a 2 [a] =) [a] 6= ?
[a]; [b] 2 X=R and [a] 6= [b]. Then, /R(a; b). Assume x 2 [a] \ [b]. Then,

R (x; a) and R(x; b) =) R (a; b). Contradiction. Thus [a] \ [b] = ?

De�nition 69 A partially ordered set, (or poset) is a system (P;�) where P
is a non-empty set and � is a binary relation on P satisfying, for all x; y; z 2 P

1. x � x

2. x � y and y � x implies x = y

3. x � y and y � z, then x � z

Example 70 Let X be a non-empty set. Then, (P (X) ;�) is a poset

Example 71 Let G be a group and SubG the set of all subgroups of G. Then,
(SubG;�) is a poset
Let H;K;L be subgroups. Then, since H � H, therefore � is re�exive
If H � K and K � H , then H = K as sets and hence groups.
Finally, if H � K and K � L, then H � L as a subset and hence a subgroup.

If Q � P and � is restricted to members of Q�Q, then (Q;�Q) is partially
ordered.

Example 72 Any non-empty collection Q of subsets of X ordered by contain-
ment forms a poset.

De�nition 73 A partially ordered set is a chain or a totally ordered set if
for every x; y 2 P , x � y or y � x

De�nition 74 The system (P;�) is an anti-chain if for any two distinct el-
ements x and y, neither (x; y) 2� nor (y; x) 2�

In such a case, the only partial order de�nable is the equality relation.

De�nition 75 In a poset, x is covered by y, written x � y, if there does not
exist z 2 P such that x � z � y
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In this case, unlike the usual understanding, x 6= y and y 6= z. This covering
relation determines the partial order for a �nite set. In fact, the partial order is
the smallest relation containing � :
Proof. Assume P is a �nite poset. Suppose P is not determined by its covering
relations. Then there exist x; y 2 P s.t. for all w; z 2 [x; y], w does not cover
z. Here, [x; y] := fx; :::; yg such that for any z in [x; y] we have x � z � y.
Choose p1 2 (x; y). Here, (x; y) := fx; :::; yg such that for any z in (x; y)
we have x � z � y with x 6= z and y 6= z. Such an element exists since y
does not cover x. Since [x; p1] � [x; y], [x; p1] is not determined by its cover
relations. Now choose p2 2 (x; p1). Continuing inductively de�nes an in�nite
subset fp1; p2; p3; :::g of P , implying the contradiction P is in�nite. Therefore,
P is determined by its covering relations.
To prove that � is the smallest covering relation. let �1 and �2 be two

covering relations which determine the partial order. Let x �1 y and y �2 x.
Then, by the determined partial relation, x = y so that (x; y) 2�1 implies
(x; y) 2�2and conversely, so that �1=�2

De�nition 76 A mapping f : (P;�P ) �! (Q;�Q) is called order preserving
if x �P y implies f (x) �Q f (y)

De�nition 77 Two posest P and Q are isomorphic, written P �= Q if a
bijective f and f�1 are order preserving maps between them.

Theorem 78 Let Q be a poset and let � : Q �! P (Q) be de�ned by � (x) =
fy j y 2 Q and y � xg. Then, Q �= R (Q) ordered by �.

Proof. By de�nition, � : Q �! R (Q) is onto. Let � (x1) = � (x2). Then
fy j y 2 Q and y � x1g = fy j y 2 Q and y � x2g. That is, for any a1 2 � (x1)
and a2 2 � (x2), a2 2 � (x1) and a1 2 � (x2). In particular, x1 2 � (x2) and
x2 2 � (x1) since x2 � x2 and x1 � x1. Thus, we have x2 � x1 and x1 � x2.
Since � is a partial order, by anti-symmetricity, we have x2 = x1. Hence, � is
bijective.
Next, let a � b. Then,

� (a) = fy j y 2 Q and y � ag

and
� (b) = fy j y 2 Q and y � bg

By assumption (a � b), we have a 2 � (b). For any x 2 � (a), we have x � a. By
assumption, we also have a � b: Hence, by transitivity, we have x � b, implying
x 2 � (b). In summary, for any x 2 � (a) ; we have x 2 � (b). Thus, � (a) � � (b),
implying � is order preserving.
De�ne ��1 (x) = b for x = � (b). This is well-de�ned since � is bijective. If

� (a) � � (b), then, by de�nition, a � b. Hence, for x � y, ��1 (x) � ��1 (y),
which implies ��1 is order preserving, as well.

De�nition 79 Let P be a poset. Then, then I � P is called an ordered ideal
if for x 2 I and y � x, we have y 2 I
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De�nition 80 Let P be a poset. Then, then F � P is called an ordered �lter
if for x 2 F and x � y, we have y 2 I

The dual of I is F

De�nition 81 A poset P has a maximum or greatest element x if x � y
for all y 2 P .

De�nition 82 A poset P has a minimum or least element x if y � x for
all y 2 P .

The maximum is the dual of the minimum

De�nition 83 An element m of a poset P is called minimal if there is no
y 2 P such that y � m and m 6= y

De�nition 84 An element m of a poset P is called maximal if there is no
y 2 P such that m � y and m 6= y

The maximal is the dual of the minimal

Lemma 85 The following are equivalent for a poset P :

1. Every non-empty subset S � P contains an element minimal in S

2. P satis�es the decreasing chain condition, that is, P contains no in�nite
decreasing chain a0 > a1 > a2 > :::

3. If a0 � a1 � a2 � ::: in P , then there exists k 2 N such that an = ak for
all n � k:

Proof. (1 =) 2)
Let an be a minimal element. Then, if a0 > a1 > a2 > ::: > an, there does

not exist an+k for k 2 N
(2 =) 3)
If a0 > a1 > a2 > ::: > an, then a0 � a1 > a2 > ::: > an. Applying the

principle of weakening n-times, we get a0 � a1 � a2 � ::: � an. Hence, if we
have an+1 di¤erent from aj for 1 � j � n, an 6� an+1, otherwise a decreasing
chain would exist since we could proceed inde�nitely. Hence, an+l = an for
l 2 N. Rephrased, this is an = ak for all n � k where k 2 N
(3 =) 1)
Suppose that there is no minimal element. Then, for any ai, we can �nd

ai+1 < ai, which contradicts the �niteness of a0 � a1 � a2 � :::

De�nition 86 A poset P is said to satisfy the ascending chain condition
(ACC) if every strictly ascending sequence of elements eventually terminates.
Equivalently, given any sequence a0 � a1 � a2 � :::, then there exists a positive
integer k such that an = ak for all n � k where k 2 N
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De�nition 87 A propositional function � (x1; x2; :::) is an operator which
acts on the objects denoted by the object variables x1; x2; ::: in a particular uni-
verse to return a truth value of false or true which depends on:

1. The values of x1; x2; :::

2. The nature of �

Theorem 88 (Subset of Set with Propositional Function) Let S be a set.
Let � : S �! ftrue; falseg be a propositional function on S. Then, fx 2 S j �(x)g �
S

Proof. s 2 fx 2 S j �(x)g =) s 2 fx 2 S ^ �(x)g =) s 2 fx 2 Sg =) s 2
S =) fx 2 S j �(x)g � S

Theorem 89 (Strong Principle of Induction) Let (P;�) be a poset not sat-
isfyng ACC and let � (x) be a true statement for some x 2 P . If 1) � (x) holds
for all minimal elements of P and 2) � (x) =) � (y) for all x � y and y 6= x,
then � (m) holds for all m 2 P

Proof. Let S = fa 2 P j �(a)g. That is, the set of all a 2 P for which �(a)
holds. Then, S � P . That is, the collection of all elements of S which satisfy �
is a subset of P . We have that x 2 S from hypothesis. Let y 2 P . Now suppose
that x � x1 � x2 � ::: � y 2 S. That is, �(x); �(x1); �(x2); : : : ; �(y) all hold.
Then that means (PynPx) � S where Pa := fx j x � ag. From (2) it follows
that �(y1) holds for y1 � y, and so (Py1nPx) � S. Thus we have established:
that

S � P
x 2 S and
(PynPx) � S =) (Py1nPx) � S
We can continue this step for yn � yn+1 for yi 6= yj where n; i; j 2 N. It

follows that (PnPx) � S. That is, for every element b 2 PnPx, it follows that
�(b) holds. But PnPx is precisely the set of all a 2 P such that b � x. Hence
the result.

Exercise 90 Draw the Hasse diagrams for all 4-element ordered posets.

Exercise 91 Let T : S �! X for S = D (T ) is a subset of X. De�ne T � � if
D (T ) � D (�) and T (x) = � (x) for all x 2 D (T ). Show that the collection of
all partial maps on X is an ordered set.

Solution 92 Since trivially D (T ) � D (T ) and T (x) = T (x), we thus have
T � T
Next, if T � � and � � T , then D (T ) � D (�) and D (�) � D (T ), which

implies D (�) = D (T ) and T (x) = � (x) for x 2 D (T ) = D (�). Thus T � �
and � � T implies � = T .
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Finally, let T � � and � � 	. Then, D (T ) � D (�) and D (�) � D (	)
and T (x) = � (x) for x 2 D (T ) and � (x) = 	 (x) for x 2 D (�). Now,
D (T ) � D (�) and D (�) � D (	) imply D (T ) � D (	) and T (x) = � (x) for
x 2 D (T ) and � (x) = 	 (x) for x 2 D (�) imply T (x) = 	 (x) for x 2 D (T )
which, by de�nition, is T � 	

Exercise 93 Give an example of a map f : (P;�P ) �! (Q;�Q) which is order
preserving but not an isomorphism.

Solution 94 Let (P;�P ) = f(x; x) ; (y; y)g and (Q;�Q) = f(a; a) ; (b; b) ; (a; b)g.
De�ne f (x) = a and f (y) = b. Then, f is order preserving but not an isomor-
phism since the inverse of a �Q b is not present in the domain.

Theorem 95 (P;�) and (Q;�) be two posets. Then, the following are equiva-
lent:

1. P �= Q

2. There exists f : (P;�)� (Q;�) such that f (x) � f (y) i¤ x � y

3. There exists f : (P;�) �! (Q;�) and g : (Q;�) �! (P;�), both order
preserving such that gf = IP and fg = IQ

Proof. (1 =) 3) Since P �= Q, we can de�ne f : (P;�P ) �! (Q;�Q) and
f�1 = g : (Q;�Q) �! (P;�P ) where f and f�1 are bijective and order-
preserving and f�1 (q) if f (p) = q for any q 2 Q and p 2 P . Now, fg (q) =
f (p) = q. Since this is valid for every q, fg = IQ. Similarly, g (f (p)) = g (q) =
p, from which we have gf = IP .
(3 =) 1) Since the left and right inverse of f is g, f is bijective. Thus,

f�1 = g and both f and f�1 are order-preserving, implying P �= Q
(1 =) 2) P �= Q implies there exist bijective f : (P;�P ) �! (Q;�Q) such

that f (x) � f (y) whenever x � y. In particular, f is onto. Let f (x) � f (y).
Then, since f�1 is order-preserving, f�1f (x) � f�1f (y) or x � y
(2 =) 1) x; y 2 f�1 (q1) implies f (x) = q = f (y) from which we have

f (x) � f (y) and f (y) � f (x) if and only if x � y and y � x, from which we
have x = y. Thus, f is bijective. To show that f�1 is order preserving, take
f (x) � f (y), then, x � y or f�1 (f (x)) � f�1 (f (y)) since x = f�1 (f (x))

Theorem 96 The following set-theoretic axioms are equivalent

1. (Axiom of Choice) If X is non-empty set, then there is a map � : P (X) �!
X such that � (A) 2 A for every non-empty set A � X

2. (Zermelo Well-ordering principle). Every non-empty set admits a well-
ordering (a total order satisfying DCC)

3. (Hausdro¤ Maximality Principle) Every chain in a poset P can be embed-
ded in a maximal chain
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4. (Zorn�s lemma) If every chain in a poset P has an upper bound in P , then
P contains a maximal element

5. If every chain in a poset P has a least upper bound in P , then P contains
a maximal element.

Lemma 97 Given a poset P and a 6� b, there exists an extension �� of � such
that (P;�) is a chain and b �� a

Proof. Let a 6� b. De�ne

x �0 y =
�

x � y or
x � b or a � y

Then, x �0 x holds. Also, if x �0 y and y �0 x, then x = y. Transitivity also
holds. Thus, �0 is a partial order with b �0 a. Repeated application for this in
the �nite case yields a total order ��. For the in�nite case, apply Zorn�s lemma
(the union of a chain of partial orders is again a partial order) to obtain a total
order ��, extending �

De�nition 98 Let P be a poset and let S � P . x 2 P is an upper bound of S
if x � s for all s 2 S. x is called the least upper bound or supremum of x is
an upper bound and x � xn for all upper bounds xn

Theorem 99 Every partial ordering on a set X is the intersection of total
orders on X.

Proof. Let R be a partial order on X, and let S be the set of all total orders
which extend R. Since every total order is a partial order, the intersection of
the orders in S certainly contains R. We show it is no bigger. So suppose that a
and b are incomparable in R. Since there is a total order extending R in which
a �1 b, and another in which b �2 a. So in the intersection of these total orders,
a and b are still incomparable.

1.5 Lattice Theory

De�nition 100 A semilattice is an algebra S = (S; �) satisfying for all x; y; z 2
S

1. x � x = x

2. x � y = y � x

3. x � (y � z) = (x � y) � z

In other words, a semilattice is an idempotent commutative semigroup.

Example 101 For a non-empty set X, (P (X) ;\) is a semi-lattice as is (P (X) ;[)
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Theorem 102 In a semi-lattice S, de�ne x � y if and only if x � y = x. Then,
(S;�) forms a poset in which every pair of elements has a greatest lower bound,
denoted by x � y. Conversely, given an ordered set (P;�) with the property that
every pair of elements has a greatest lower bound. De�ne x � y = sup fx; yg.
Then, (P; �) is a semi-lattice

Proof. Since every semi-lattice is idempotent, we have x � x. Let x � y and
y � x. Then, x � y = x and y � x = y. Combined,

x = x � y = x � (y � x) = (x � y) � x = (y � x) � x = y � (x � x) = y � x = y
Hence, x = y
Finally, let x � y and y � z. Then, x � y = x and y � z = y and x � z =

(x � y) � z = x � (y � z) = x � y = x. That is, x � z = x so that x � z
If x � y, then the greatest lower bound of x and y, x � y = x. On the other

hand, if y � x, then y � x = x � y = y
Finally, if a � x and a � y, then, a � x = a and a � y = a from which the

greatest lower bound of x and y, a = a � x = x � a = x � (a � y) = x � (y � a) =
(x � y) � a
Assume that the glb of x; y; i.e. x � y = a does not exist but then S is not

a semi-lattice since the binary operation is not de�ned for x; y
Conversely, we show that (P;�) is a semi-lattice.
1. x � x = sup fx; xg = sup fxg = x
2. x � y = sup fx; yg = sup fy; xg = y � x
3. (x � y) � z = sup fsup fx; yg ; zg = sup fx; y; zg = sup fx; sup fy; zgg =

x � (y � z)
Such a lattice in which the glb is de�ned is called a meet semi-lattice with

^ as the binary operation.

De�nition 103 A homomorphism between two semi-lattices (S; �) and (T; �0)
is a function f : S �! T such that f (x � y) = f (x) �0 f (y) for all x; y 2 S:
Two lattices are isomorphic if the homomorphism is bijective.

Theorem 104 Two semi-lattices are isomorphic if and only if they are isomor-
phic as ordered sets.

Proof. ( =) )
Let (S; �) and (T; �0) be two semi-lattices and let f be an isomorphism

between the semi-lattices. From a semi-lattice, we can de�ne an ordered set
by de�ning x � y = x if and only if x � y for all x; y 2 S and x �0 y = x
if and only if x �0 y for all x; y 2 T . Then, x � y =) x � y = x
=) f (x � y) = f (x) =) f (x) �0 f (y) = f (x) =) f (x) �0 f (y).
To prove that f�1 is also order preserving, let f (x) �0 f (y), then f (x) �0

f (y) = f (x) =) f (x � y) = f (x). Since f is bijective, we have x � y = y =)
x � y =) f�1 (f (x)) � f�1 (f (y)) :
((= ) Let (S;�) �= (T;�0) under f . De�ne x ^ y = glb fx; yg to get a

meet-lattice for x; y 2 S. Then, x � y =) x ^ y = x so that f (x) �0 f (y)
implies f (x ^ y) = f (x) = f (x) ^0 f (y).
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Theorem 105 The collection of all ordered ideals of a meet semi-lattice S
forms a semi-lattice O (S) under intersection

Proof. Let O (S) be the collection of all ordered ideals and let I1; I2 2 O (S).
Then, if y1 2 I1, y2 2 I2 and x1 � y1 and x2 � y2 implies x1 2 I1 and
x2 2 I2. Let x 2 I1 \ I2. Then, x 2 I1 and x 2 I2. For y � x, y 2 I1 and
y 2 I2 =) y 2 I1 \ I2. Thus, the intersection of any two ideals I1 \ I2 forms
an ideal so that "\ " is a binary operation. Now, for I \ I = I, the idempotent
law is trivially satis�ed so any set.
Next, I1 \ I2 = I2 \ I1
The intersection of three sets is also associative.

Theorem 106 Let S be a meet semi-lattice. De�ne � : S �! O (S) by � (x) =
fy 2 S j y � xg. Then, S is isomorphic to (� (S) ;\)

Proof. As already proved, the set of ordered ideals of a semi-lattice S forms
a semi-lattice O (S). It remains to prove that � is structure preserving and
bijective. Let y � x. Then, a 2 � (y), a � y � x =) a 2 � (x). Hence,
y � x =) � (y) � � (x). In this case, x ^ y = x implies � (x ^ y) = � (x) =
� (x) \ � (y) since � (y) � � (x). Similarly, x ^ y = y can be treated. Now, if
x ^ y = z for some z 2 S, then z � x and z � y so that � (z) � � (y) and
� (z) � � (x) =) � (z) � � (x)\� (y). Hence, � (x ^ y) = � (z) � � (x)\� (y).
Note that � (z) is the set of lower bounds of x and y. Now, let c 2 � (x)\� (y).
Then, c � z since c is a lower bound and z is the greatest lower bound. Hence,
� (x) \ � (y) � � (z). Thus, � (x) \ � (y) = � (z) which implies � (x ^ y) =
� (x) \ � (y).
To prove that � is bijective, �rst we prove that � is one-to-one. Let � (x) =

� (y). Since x 2 � (x) (because x � x) and y 2 � (y). Therefore, x 2 � (y) and
y 2 � (x). Thus, x � y and y � x which implies x = y.
Next, let fy 2 S j y � xg be an element of the image of �. Then, ��1 (� (x)) =

sup� (x). Since this is the dual of the meet operator, therefore sup� (x) must
exist and hence for any element of the image of �, we can �nd an element of the
domain.

De�nition 107 A lattice is an algebra L = (L;_;^) satisfying, for all x; y; z 2
L

1. x _ x = x

2. x ^ x = x

3. x _ y = y _ x

4. y ^ x = x ^ y

5. (x ^ y) ^ z = x ^ (y ^ z)

6. (x _ y) _ z = x _ (y _ z)
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7. x ^ (x _ y) = x

8. x _ (x ^ y) = x

That is, a lattice is a meet-lattice and join-lattice with a way to connect
both via the absorption law.
We have already seen isomorphism and homomorphism between ordered sets.

Consider the lattices (U;_u;^u) and (V;_v;^v). Instead of a poset with one
relation, we have two relations. In this case, we have the following de�nition:

De�nition 108 f : U �! V is a homomorphism of these two lattices if
f (x ^u y) = f (x)^vf (y) and f (x _u y) = f (x)_vf (y). f is an isomorphism
if f is bijective. An isomorphism of a lattice with itself is an automorphism.

Lemma 109 Let f : U �! V be a homomorphism and �� U � U such that
a � b if f (a) = f (b). Then, � is an equivalence relation.

Proof. f (a) = f (a) so � is re�exive
f (a) = f (b) implies f (b) = f (a) so that � is symmetric.
Finally, f (a) = f (b) and f (b) = f (c) implies f (b) = f (c) so that a � b

and b � c implies a � c

Lemma 110 If a � b and c � d, then a _ c � b _ d and a ^ c � b ^ d

Proof. By hypothesis, f (a) = f (b) and f (c) = f (d)
=) f (a) _ f (c) = f (b) _ f (d) and f (a) ^ f (c) = f (b) ^ f (d)
=) f (a _ c) = f (b _ d) and f (a ^ c) = f (b ^ d)
=) a _ c � b _ d and a ^ c � b ^ d
Thus, this equivalence relation has two additional properties. Such a relation

is called a congruence relation, which gives rise to homomorphisms.

Theorem 111 If � is a congruence on the lattice U , then the set of equivalence
classes U= � forms a lattice under the operation [a] _ [b] = [a _ b] and [a] ^
[b] = [a ^ b]. The mapping g : U �! U= � such that g (a) = [a] is a lattice
homomorphism.

Proof. Idempotent
[a] _ [a] = [a _ a] = [a]
[a] ^ [a] = [a ^ a] = [a]
Commutative
[a] _ [b] = [a _ b] = [b _ a] = [b] _ [a]
[a] ^ [b] = [a ^ b] = [b ^ a] = [b] ^ [a]
Associcative
[a] _ ([b] _ [c]) = [a] _ ([b _ c]) = [a] _ [(b _ c)]
= [a _ (b _ c)]
= [(a _ b) _ c] = [(a _ b)] _ [c]
= ([a _ b]) _ [c]
[a] ^ ([b] ^ [c]) = [a] ^ ([b ^ c]) = [a] ^ [(b ^ c)]
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= [a ^ (b ^ c)]
= [(a ^ b) ^ c] = [(a ^ b)] ^ [c]
= ([a ^ b]) ^ [c]
Absorption laws
[a] ^ ([a] _ [b])
= [a] ^ [a _ b]
= [a ^ (a _ b)]
= [a]
[a] _ ([a] ^ [b])
= [a] _ [a ^ b]
= [a _ (a ^ b)]
= [a]
g (a _ b) = [a _ b] = [a] _ [b] = g (a) _ g (b)
g (a ^ b) = [a ^ b] = [a] ^ [b] = g (a) ^ g (b)

De�nition 112 An isomorphism of a system with itself is called an automor-
phism.

Theorem 113 Let I = (f0; 1g ;�) be a poset and let Aut(I) be the set of all
automorphisms of I. Show that Aut(I) is a group with respect to composition of
functions. This group is called the group of automorphisms of I.

Proof. Let f; g 2Aut(I). Then, f (g (a _ b)) = f (g (a) _ g (b)) = f (g (a)) _
f (g (b)) : Similarly, f (g (a ^ b)) = f (g (a)) ^ f (g (b)) so that Aut(I) is closed
under composition. Function composition is trivially associative. Also, the
identity map I is an automorphism since I (a _ b) = a _ b = I (a) _ I (b) and
I (a ^ b) = I (a)^ I (b) so that the identity exists. Since any f 2Aut(I) is bijec-
tive, f�1 must exist. Now, f (a _ b) = f (a) _ f (b) implies f�1f (a _ b) =
a _ b = f�1 (f (a) _ f (b)) : Let f (a) = x and f (b) = y. Then, we have�
f�1 (x)

�
_
�
f�1 (y)

�
= f�1 (x _ y). Similarly for the second binary operation

so that f�1 2Aut(I)

De�nition 114 Let � and � be two t-norms. The systems (I; �) and (I; �) are
isomorphic if there is an element h 2Aut(I) such that h (x � y) = h (x) � h (y).
In such a case, the t-norms are said to be isomorphic

Isomorphism between t-norms is an equivalence relation and paritions t-
norms into equivalence classes.
Proof. Let (I; �) � (I; �) () h (x � y) = h (x) � h (y)
Then, h (x � y) = h (x) � h (y) () (I; �) � (I; �)
Next, (I; �) � (I; �)
() h (x � y) = h (x) � h (y)
() h (x � y) = h (x � y)
() h (x) � h (y) = h (x � y)
() (I; �) � (I; �)
Finally, If (I; �1) � (I; �2) and (I; �2) � (I; �3)
then h (x �1 y) = h (x) �2 h (y) and h (x �2 y) = h (x) �3 h (y)
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Or h (x �1 y) = h (x �2 y) and and h (x �2 y) = h (x) �3 h (y)
Therefore, h (x �1 y) = h (x) �3 h (y)
() (I; �1) � (I; �3)
Any equivalence relation partitions a set into equivalence classes.
The t-norm min is rather special since it is the only idempotent t-norm and

not isomorphic to any other so it is an equivalence class all by itself.

Corollary 115 The set of automorphisms of (I; �) is a subgroup of Aut(I).

Proof. Let h; g 2Aut(I; �) such that h (x � y) = g (x)�g (y). Then, g�1h (x � y) =
x � y so that

gh�1 2Aut(I; �)
Thus, with each t-norm �, there is a group associated with it, namely the

automorphism group Aut(I; �) = ff 2 Aut (I) j f (x � y) = f (x) � f (y)g. This
is the automorphism of the group of the t-norm �. For the t-norm min, it is
clear that Aut(I;min) =Aut(I)
If H is a subgroup of a group G and g 2 G, then g�1Hg =

�
g�1hg j h 2 H

	
is a subgroup of G. This subgroup is said to be conjugate to H or a conjugate
of H. The map h �! g�1hg is an isomorphism from H to its conjugate g�1Hg

Theorem 116 If two t-norms are isomorphic, then their automorphism groups
are conjugate

Proof. Suppose that the systems (I; �) and (I; �) are isomorphic. Then, there
is an element f 2Aut(I) f : (I; �) �! (I; �) such that f (x � y) = f (x) �
f (y). The map g �! f�1gf 2Aut(I) from Aut(I; �) to Aut(I; �) so that
f�1Aut(I; �) f =Aut(I; �)

Theorem 117 The meet and join operators in a lattice induce the same order

Proof. Let � and �0 be two orders induced by ^ and _, respectively. De�ne
x _ y = y () x � y and x ^ y = x () x �0 y.
We have already proved that a semi-lattice forms a poset. Hence the de�ni-

tion makes sense.
Let (x; y) 2�. Then, from x _ y = y and x ^ (x _ y) = x
x ^ y = x =) x �0 y =) (x; y) 2�0
Conversely, let (x; y) 2�0. Then, from x ^ y = x and x _ (x ^ y) = x, we

have
x _ y = (x ^ y) _ y = y _ (x ^ y) = y _ (y ^ x) = y. That is, x _ y = y =)

(x; y) 2�
Thus, �=�0
For a subset A of a partially ordered set (P;�), let Au denote the set of

all upper bounds of A.That is, Au = fx 2 P j x � a, 8a 2 Ag. Similarly we can
de�ne the set all lower bounds of A by Al fx 2 P j x � a, 8a 2 Ag.
When does A have a least upper bound and greatest lower bound? Al and

Au are non-empty if the poset is bounded. Thus, for any l 2 Al and u 2 Au,
a � u and l � a for every a 2 A. The least upper bound of A exists when
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the greatest lower bound of Au exists. Similarly, the greatest lower bound of A
exists when the least upper bound of Al exists.
In such a case, supA =

W
A =

V
Au and inf A =

V
A =

W
Al.

Theorem 118 Let S be a �nite meet-lattice with greatest element 1. Then, S
is a lattice with the join de�ned by x _ y =

V
fx; ygu

Proof. By hypothesis, we have x^x = x, x^y = y^x and x^(y ^ z) = (x ^ y)^
z. Note that for any x; y, fx; ygu is non-empty since 1 � x; y. Also,

V
fx; ygu

will always exist since we have a semi-lattice. It follows that if
V
fx; ygu = a,

then a � ai for all ai 2 fx; ygu so that a = x _ y. Hence, the de�nition makes
sense.
Now, x _ x =

V
fx; xgu =

V
fxgu = a (say)

By de�nition, a � x and for any z 2 fxgu, a � z
Thus, x � x =) x 2 fxgu and for any z 2 fxgu, x � z
=) x =

V
fxgu = x _ x

Next, x _ y =
V
fx; ygu =

V
fy; xgu = y _ x

For associativity, x _ (y _ z) = ^fx;^fy; zgugu
If
V
fy; zgu = a (say) and

V
fx; agu = b

These exist because y _ z and consequently a _ x exists
Then, a � y; z and b � x; a and for any ai 2 fy; zg u and bi 2 fx; agu, b � bi

and a � ai
Now, a � y; z and b � x; a =) b � x; y; z imply a^b � fx; y; zgu, thereforeV
fx;^fy; zgugu =

V
fx; y; zgu and so ^ is associative

To prove that the absorption laws hold, y ^ (y _ x) = y ^ (
V
fx; ygu) = LetV

fx; ygu = a. Then, a � ai where ai 2 fx; ygu. In particular, x � x and y � y
implies x; y 2 fx; ygu so that a = x or y. If a = x, then y ^ a = x but this is
not possible since we have de�ned x � y () x _ y = y. Thus, a = y is the
only possibility. Hence, y � x so that y ^ y = y
For the second part, x _ (x ^ y) =

V
fx; x ^ ygu. If x ^ y = a, thenV

fx; agu = x since the upper bounds of x; a include x by de�nition of x^y = a
and x 2 fx; agu, we must have x _ (x ^ y) =

V
fx; x ^ ygu = x:

This result not only yields an immediate supply of lattice examples but it
provides us with an e¢ cient algorithm for deciding when a �nite ordered set is
a lattice. If P has a greatest element and every pair of elements has a meet,
then P is a lattice.
The dual version says that if every join-lattice has a smallest element, then

that join-lattice is a lattice.
Every �nite subset of a lattice has a greatest and least upper bound but

these bounds need not exist for in�nite subsets. For instance, the set of rational
numbers with the usual ordering is not bounded above and hence does not have
a greatest element and thus no greatest upper bound.

De�nition 119 A lattice is said to be complete if for every subset A of the
lattice,

W
A and

V
A exists.

Remark 120 Every �nite lattice is complete
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Proof. In a lattice, the meet and join operations are de�ned for every two
elements. Since any subset of a �nite set is �nite, therefore we can de�ne the
meet of any �nite subset A of lattice L as follows: if A = fx1; x2; :::; xng, then
_A = x1_x2_ :::_xn with the brackets ignored since _ is associative. Similarly,V
A = x1 ^ x2 ^ ::: ^ xn. Thus, the meet and join of any subset of a lattice

exists, making the lattice complete.

Proposition 121 Every complete lattice has a greatest and least element.

Proof. Since for any complete lattice L, L � L =)
W
L and

V
L exists. To

prove that
V
L = 0 and

W
L = 1, assume

V
L 6= 0 and _L 6= 1. Let

V
L = y

and
W
L = x. Then, y � xi 8i but then y is the least element =) y = 0.

Similarly, xi � x 8i =) x = 1.
The converse is not generally true. For instance, the open sets of a topo-

logical space, ordered by inclusion, is a lattice. The supremum is given by the
union of open sets and the in�mum by the interior of the intersection. This
forms a complete and bounded lattice. On the other hand, if we de�ne in�mum
to be set intersection, the open sets form a bounded but not complete lattice
since, in general, arbitrary intersections of open sets are not open. A simpler
example would be as follows: Let P � Q with the usual order among rationals,
�q � p � q for all p 2 P for some q 2 Q. This is a lattice, with operations
a^b = minfa; bg and a_b = maxfa; bg. In fact, this lattice gives rise to a totally
ordered. Every �nite subset of P has a least upper bound (the maximum) and
a greatest lower bound (the minimum). However, the set

�
x j x 2 P , x2 < 2

	
has no least upper bound.
By convention,

V
? = 1 and

W
? = 0.

De�nition 122 An element q of a lattice L is called join irreducible if q =
_F for a �nite set F implies q 2 F .

In essence, this states that q cannot be formed by considering the join of
some other elements. If that is the case, then q is among the elements. The set
of join irreducible elements in L is denoted by J (L).

Proposition 123 0 2 J (L)

Proof.
W
? = 0 implies 0 2 ?

Lemma 124 If a lattice L satis�es DCC, then every element of L is a join of
�nitely many joint irreducible elements.

Proof. Since the join operation is de�ned for each element, we can always have
x = y _ z where y � x and z � x. If y and z are both join irreducible, then
we are done. Otherwise, we can always write y or z as a _ b and repeat the
argument. Since L has no in�nite decreasing chains, this process ends after a
�nite number of steps.

Exercise 125 Draw the Hasse diagrams for all 5 element meet-lattices
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Solution 126
5

2:jpg

Exercise 127 Draw the Hasse diagram for all 6 element lattices

Exercise 128 Draw the lattice of subspaces of the vector space R2

Solution 129 The only possible subspaces of R2 are R2, ? and lines y = kx
passing through the origin where k is any constant. Containment is easy to see
and the intersection of any two subspaces is the trivial subspace and that the
join, the span of two subspaces, is the R2 if the trivial subspace is ignored.

Exercise 130 Prove that a lattice which has a least element and satis�es the
ACC is complete

Proof. Let 0 � x1 � x2 � x3 � ::: � xn � xn+1 � :::
Then, xn+i = xn 8i and we have �nite elements. The presence of the

least element ensures that the set of lower bounds of any two elements is non-
empty, making the meet of any two elements possible. The presence of a greatest
element xn ensures that the set of upper-bounds of any two elements is possible.
Since we have a �nite lattice, the subset of any �nite lattice will have the meet
and joined de�ned, making the lattice complete

Exercise 131 Give explicitly the subgroup lattice for the cyclic group Z4.

Solution 132 The subgroups of Z4 are f0g ; f0; 2g and Z4. In this case, the
simple union and intersection of sets can be used to de�ne the meet and join.
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Exercise 133 Let X,Y be sets and R � X � Y be a relation. For A � X and
B � Y , let

� (A) = fy 2 Y j aRy for all a 2 Ag
� (B) = fx 2 X j xRb for all b 2 Bg

Prove that (a) A � �� (A) and B � �� (B) for all A � X and B � Y , (b)

A � A
0
=) � (A) � �

�
A
0
�
and B � B

0
=) � (B) � �

�
B

0
�
and (c)

� (A) = ��� (A) and � (B) = ��� (B) for all A � X and B � Y

Solution 134 (a) Let a 2 A � X. Then, y 2 � (A) � Y , aRy. Using
� (� (A)) = fx 2 X j xRy for all y 2 � (A)g
and aRy, we have a 2 � (� (A))
Similarly, let b 2 B � Y . Then, x 2 � (B) � X implies xRb. Since

�� (B) = fy 2 Y j xRy for all x 2 � (B)g, therefore b 2 �� (B)
(b) Let x 2 � (A0). Then, 8a0 2 A, a0Ra
=) a0Ra 8a0 2 A0 because A � A

0

=) x 2 � (A)
=) � (A) � �

�
A
0
�

Similarly B � B
0
=) � (B) � �

�
B

0
�

(c) Let �� (A) = A0 and �� (B) = B0. Then, by (a) and (b), � (A) �
��� (A) and � (B) � ��� (B)
Clearly, x 2 � (A) =) x 2 ��� (A) by (b)
=) � (A) � ��� (A)
Similarly, � (B) � ��� (B), completing the proof.

De�nition 135 A lattice L =(L;_;^) ismodular if x � z implies x_(y ^ z) =
(x _ y) ^ z for all x; y; z 2 L

Theorem 136 A lattice L =(L;_;^) is modular i¤ x � z implies x_(y ^ z) �
(x _ y) ^ z

Proof. ( =) ) From modularity, x � z implies x _ (y ^ z) = (x _ y) ^ z for all
x; y; z 2 L so that we have x_ (y ^ z) � (x _ y)^ z and x_ (y ^ z) � (x _ y)^ z
((= ) x � z and x � x _ y implies x is a lower bound for fz; x _ yg. Also,

z � y ^ z trivially for any lattice. Similarly, y � y ^ z =) x_ y � y ^ z. Thus,
the set of lower bounds for fz; x _ ygl � fx; y ^ zg. In e¤ect, x _ (y ^ z) �
(x _ y) ^ z, so that this and the hypothesis x _ (y ^ z) � (x _ y) ^ z implies
x _ (y ^ z) = (x _ y) ^ z for any pair of elements x; y; z 2 L

Example 137 Let M be a left R-module and L be the collection of all submod-
ules of M . Then, L is a modular lattice

In this case, ^ is replaced by the usual intersection. The ordering is the usual
set-theoretic inclusion. The intersection of two submodules is a submodule. The
greatest element here is M itself since it is a submodule of itself. Likewise, the
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intersection of all the submodules in L will give us the least element. _ is
replaced by the span of two submodules. More rigorously, for A;B 2 L =
A_B = A+B = fa+ b j a 2 A; b 2 Bg. In fact, this is the smallest submodule
containing A and B because if C is a submodule containing A and B, it is closed
under addition. Thus for all a 2 A and b 2 B, a; b 2 C, hence a + b 2 C and
A+B � C. Therefore A+B "is the smallest" (under inclusion). Let A;B;C 2 L
such that A � C. We need to show that A + (B \ C) � (A+B) \ C. Let
x 2 (A+B)\C. Then, x = a+ b and a+ b 2 C for some a 2 A � C and b 2 B.
Then, b = x� a. Since x 2 C and a 2 C, then b = x� a 2 C. Hence, b 2 B \C
and x = a+ b 2 A+ (B \ C) so that A+ (B \ C) � (A+B)\C. Even though
this su¢ ces, we will show that A+(B \ C) � (A+B)\C holds, which is trivial
in any lattice if A � C. Let x 2 A+(B \ C). Then, x = a+ b where b 2 B \C.
Then, x�a 2 B and x�a 2 C and x 2 A+B. Since a 2 A � C and x�a 2 C,
then x 2 C. Thus, we have x 2 C and x 2 A+B =) x 2 (A+B) \ C:

Theorem 138 Every totally ordered set is a modular lattice.

Proof. We can form a lattice from the relation � by relying on the fact that we
can have a meet-lattice from a � c () a^c = a. Similarly, a � c () a_c = c
to get a join-lattice. Using these two, we can prove the absorption laws as
follows: Since we can have a � c, then a ^ (a _ c) = a ^ c = a. a _ (a ^ c) =
a _ a = a. We can also have c � a and then a ^ (a _ c) = a ^ a = a and
a_ (a ^ c) = a_ c = a. We have proved that from a totally ordered set, we can
have a lattice. To prove that the lattice is modular, let a � c. We will prove
that a _ (b ^ c) = (a _ b) ^ c by arguing on a case-by-case basis
Case-I
a � c � b
Then, a _ (b ^ c) = a _ c = c and (a _ b) ^ c = b ^ c = c
Case-II
a � b � c
a _ (b ^ c) = a _ b = b and (a _ b) ^ c = b ^ c = b
Case-III
b � a � c
a _ (b ^ c) = a _ b = a and (a _ b) ^ c = a ^ c = a
These are the only three possibilities. Any other possibility will reduce to

either one of the case because of transitivity.

Exercise 139 Show that a lattice L = (L;_;^) is modular i¤ the equality x _
(y ^ (x _ t)) = (x _ y) ^ (x _ t) holds

Solution 140 ( =) ) x � z implies x_ (y ^ z) = (x _ y)^ z for all x; y; z 2 L
Since we can write z = x _ t, then we are done.
((= ) assume x _ (y ^ (x _ t)) = (x _ y) ^ (x _ t). Then, x � x _ t = z

(say) trivially and x _ (y ^ (x _ t)) = (x _ y) ^ (x _ t) by hypothesis so that
x _ (y ^ z) = (x _ y) ^ z

Exercise 141 Show that a lattice L = (L;_;^) is modular i¤ x � t and z � y
implies x _ (y ^ (z _ t)) = ((x _ y) ^ z) _ t
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Solution 142 ( =) ) x � t =) x _ (y ^ t) = (x _ y) ^ t
z � y =) z _ (t ^ y) = (z _ t) ^ y
=) x _ (z _ (t ^ y)) = x _ (y ^ (z _ t))
Focusing on the left side, x _ (z _ (t ^ y))
= x _ ((z _ t) ^ y)
= x _ (y ^ (z _ t))
((= )

Exercise 143 Show that a lattice L = (L;^;_) is modular i¤ a^b = a^c; a_c =
a _ b, b � c together imply b = c for any a; b; c 2 L

Proof. ( =) ) From the modulartiy of L, b � c implies b_ (a ^ c) = (b _ a)^ c
Now, b = b _ (a ^ b) = b _ (a ^ c) = (b _ a) ^ c = (a _ c) ^ c = c
((= ) b = b _ (a ^ b) = b _ (a ^ c)
c = (a _ c) ^ c = (b _ a) ^ c
In e¤ect, b _ (a ^ c) = (b _ a) ^ c from a ^ b = a ^ c; a _ c = a _ b, b � c

De�nition 144 A lattice is distributive if either i) a _ (b ^ c) = (a _ b) ^
(a _ c) or ii) a ^ (b _ c) = (a ^ b) _ (a ^ c)

Proposition 145 The above two conditions are equivalent

Proof. i) implies ii)
(a ^ b) _ (a ^ c)
= ((a ^ b) _ a) ^ ((a ^ b) _ c)
= a ^ ((a ^ b) _ c)
= a ^ (c _ (a ^ b))
= a ^ ((c _ a) ^ (c _ b))
= (a ^ (c _ a)) ^ (c _ b)
= a ^ (c _ b)
= a ^ (b _ c)
ii) implies i)
(a _ b) ^ (a _ c)
= ((a _ b) ^ a) _ ((a _ b) ^ c)
= a _ ((a _ b) ^ c)
= a _ ((a ^ c) _ (c ^ b))
= (a _ (a ^ c)) _ (c ^ b)
= a _ (c ^ b)

Lemma 146 Every distributive lattice is modular

Proof. Let x � z. Then, x _ (y ^ z) = (x _ y) ^ (x _ z) = (x _ y) ^ z
The converse is not true. Example, M5 is modular but not distributive

Exercise 147 Show that a lattice is distributive i¤ a ^ b = a ^ c; a _ c = a _ b
together imply b = c for any a; b; c 2 L
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Proof. ( =) ) Distributivity implies modularity so that this part can be proved
using the previous exercise.
((= ) (a _ b) ^ (a _ c)
= (a _ c) ^ (a _ c)
= (a _ c)
= a _ (c ^ c)
= a _ (c ^ b)

De�nition 148 Let L = (L;^;_) be a lattice with a greatest 1 and least 0
element. A complement of an element a of L is an element a�of L such that
a ^ a0 = 0 and a _ a0 = 1

Proposition 149 In a distributive lattice with a least element and greatest el-
ement
(a) an element has at most one complement
(b) if a

0
is a complement of a and b

0
is the complement of b, then a

0 _ b0 is
the complement of a ^ b and a0 ^ b0 is the complement of a _ b

Proof. (a) Suppose an element a has two complements a1 and a2. Then, a_a1 =
1 = a _ a2
Similarly, a ^ a1 = a ^ a2. By the previous exercise, a1 = a2

(b)
�
a
0 _ b0

�
^ (a ^ b)

=
h�
a
0 _ b0

�
^ a
i
^ b

=
h�
a
0 ^ a

�
_
�
b
0 ^ a

�i
^ b

= b
0 ^ a ^ b

= b
0 ^ b ^ a

= 0 ^ a
= 0�
a
0 _ b0

�
_ (a ^ b)

= a
0 _
�
b
0 _ (a ^ b)

�
= a

0 _
��
b
0 _ a

�
^
�
b _ b0

��
= a

0 _
��
b
0 _ a

�
^ 1
�

= a
0 _ b0 _ a

= a
0 _ a _ b0

= 1 _ b0

= 1
Similarly,

�
a
0 ^ b0

�
_ (a _ b)

=
��
a
0 ^ b0

�
_ a
�
_ b

=
��
a
0 _ a

�
^ (b _ a)

�
_ b

= (1 ^ (b0 _ a)) _ b
= (b0 _ a) _ b
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= b0 _ a _ b
= b0 _ b _ a
= 1 _ a
= 1
Finally,

�
a
0 ^ b0

�
^ (a _ b)

= a
0 ^
�
b
0 ^ (a _ b)

�
= a

0 ^
��
b
0 ^ a

�
_
�
b
0 ^ b

��
= a

0 ^
��
b
0 ^ a

�
_ 0
�

= a
0 ^
�
b
0 ^ a

�
= a

0 ^ b0 ^ a
= a

0 ^ a ^ b0

= 0 ^ b0 = 0

De�nition 150 A Boolean Lattice is a bounded distributive lattice in which
every element has a complement.

De�nition 151 A Boolean ring B is a ring with identity in which x2 = x for
all x 2 B

Exercise 152 A Boolean ring B is commutative and has a characteristic of 2

Solution 153 2x = x+ x = (x+ x)
2
= 2x2 + 2x2 = 2x+ 2x

Hence, 2x = 0 8x 2 Bn f0g
Therefore, char(B) = 2
x+ y = (x+ y)

2
= x2 + y2 + xy + yx = x+ y + xy + yx

Hence, xy + yx = 0. Since 2xy = 0,
or, xy = xy =) xy + 0 = xy =) xy + xy + yx = xy =) 2xy + yx = xy

or xy = yx

Exercise 154 If B is a Boolean ring, then B, partially ordered by x � y ()
xy = x is a Boolean Lattice L = (B; :;+) in which where x:y = x ^ y and
x _ y = x+ y � xy and x0 = 1� x

Solution 155 Trivially, x2 = x hence ^ is idempotent. Also, the both the
operations are commutative since a Boolean ring is commutative in both oper-
ations. Multiplication is, by default, associative. To show that join is asso-
ciative, x _ (y _ z) = x _ (y + z � yz) = x + (y + z � yz) + x (y + z � yz) =
x+ y + z � yz + xy + xz � xyz
The other law equals (x _ y) _ z = (x+ y � xy) _ z = x + y � xy + z +

(x+ y � xy) z
The sides can be shown to be equal by recalling the fact that the characterisitic

of this ring is 2.
For the absorption laws, (x _ y)^y = (x+ y � xy) y = xy+y2�xy = y2 = y
and (x ^ y) _ y = (xy) _ y = xy + y � xy2 = xy + y � xy = y
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Exercise 156 Let D be the set of all positive divsors of some n 2 N, partially
ordered by x � y if and only if x j y. Show that D is distributive lattice. When
is D a Boolean lattice?

Solution 157 We will make do with the usual conversion of order to meet and
join. i.e. x ^ y = y () y � x and its dual. This does indeed form a
lattice, as already proved. We can de�ne meet and join by x^y = gcd (x; y) and
x _ y = lcm (x; y). If we write x = p�11 p�22 :::p�kk , y = p

�1
1 p

�2
2 :::p

�k
k where the pi

are distinct primes and the �i and �i are non-negative integers, the gcd(x; y) =Q
1�i�k

p
min(�i;�i)
i ; lcm (x; y) =

Q
1�i�k

p
max(�i;�i)
i : Hence if z = pc11 p

c2
2 :::p

ck
k , ci non-

negative integral, then x _ (y ^ z) = lcm (x; gcd (y; z)) =
Q

1�i�k
p
max(�i;min(�i;ci))
i

and gcd (lcm (x; y) ; lcm (x; z)) =
Q

1�i�k
p
min(max(�i;�i);max(�i;ci))
i . Now the set of

non-negative integers with the natural order is totally ordered and max(�i; �i) =
�i_�i and min(�i; �i) = �i^�i in this lattice. Hence, the distributive law in this
lattice leads to the relation max(�i;min(�i; ci)) = min(max(�i; �i);max(�i; ci)).
Then we have lcm (x; gcd (y; z)) = gcd (lcm (x; y) ; lcm (x; z))

Exercise 158 A co�nite subset of a set X is a subset S of X whose complement
X � S is �nite. Show that the subsets of X that are either �nite or co-�nite
constitute a Boolean lattice

Solution 159 Of course the collection of subsets forms a lattice as has been
already proven. The distributive and De Morgan�s laws are well-known. The
empty set is �nite so that does with the least element. To prove that the largest
element X is a member of this, we only need to observe that X �X is �nite.

A central idempotent of a ring R with identity is an element e of R such that
e2 = e and ex = xe for all x. Show that the central idempotents of R constitute
a Boolean lattice when ordered by e � f () ef = e

Solution 160 Since we have an idempotent ring with identity, we have com-
mutativy as was proved above
De�ne e _ f = e+ f � ef and e ^ f = ef .
Now, for idempotentcy,
e _ e = e+ e� e2 = e
e ^ e = e2 = e.
For commutativity,
e _ f = e+ f � ef = f + e� fe = f _ e
e ^ f = ef = fe = f ^ e
For associativity,
(e _ f) _ g = (e+ f � ef) _ g
= e+ f � ef + g � g (e+ f � ef)
= e+ f � ef + g � ge� gf + gef
= e+ f � ef + g � ge� gf + gef � 2gef
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= e+ f + g � gf � gef � ef � eg
= e+ (f + g � gf)� e (f + g + gf)
= e+ (f + g � gf)� e (f + g + gf � 2gf)
= e+ (f + g � gf)� e (f + g � gf)
= e _ (f + g � fg) = e _ (g _ f)
and e ^ (f ^ g) = e ^ (fg) = e (fg) = (ef) g
= (e ^ f) g = (e ^ f) ^ g
For the absorption laws,
(e _ f) ^ e = (e+ f � ef) e = e2 + fe� efe
= e+ fe� e2f = e+ fe� ef = e
and also (e ^ f) _ e = (ef) + e� (ef) e = ef + e� e2f = efef + e� ef = e
For distributive laws,
(e ^ f) _ g = (ef) _ g = ef + g � efg =
= ef + eg � eg + gf � gf � 2efg + 2efg + g � efg
= ef + eg � efg + gf + g � fg � efg � eg + efg
= ef + eg � efg + gf + g2 � fg2 � efg � eg2 + efg2
= (e+ g � eg) (f + g � fg)
= (e _ g) ^ (g _ f)
Similarly, (e _ f) ^ g
= (e+ f � ef) g
= eg + fg � efg
= eg + fg � e2fg
= eg + ef � efeg
= (eg) _ (ef)
= (e ^ g) _ (e ^ f)
We use the additive identity 0 and the multiplicative identity 1 as our bounds
To this end, we see that e ^ 1 = (e) (1) = e, e _ 1 = e+ 1� (e) (1) = 1
Furthermore, e ^ 0 = (e) (0) = 0 and e _ 0 = e+ 0� (e) (0) e
Clearly, both bounds are idempotent and central
Finally, if we de�ne the our complements as ec = 1� e, then e _ ec
= e� (1� e)� (e) (1� e)
= e� 1 + e� e+ e2 = 2e
= �1 = �1 + 2 (1) = 1
Furthermore, e ^ ec = (e) (1� e) = e � e2 = e � e = 0. A �nal test is the

satisfaction of the De Morgan Laws. (e _ f)c = (e+ f � ef)c = 1� e� f + ef
1� e+ f (e� 1) = �1 (e� 1) + f (e� 1)
(e� 1) (f � 1) = (1� e) (1� f) = ec ^ fc
Also, (e ^ f)c = (ef)c = 1� ef
= 1� ef + f � f + 2 + e� e
= 1� e+ 1� f � 1 + f + e� ef
= (1� e) + (1� f)� (1� e) (1� f)
= ec _ fc
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2 Fuzzy Theory

This portion of the lecture notes is majorly copied from Xuzhu Wang, Da Ruan
and Etienne E. Kerre�s Mathematics of Fuzziness �Basic Issues.

2.1 Fuzzy set theory

In this chapter, we focus on the introduction of fundamentals in fuzzy set theory,
including some set-theoretic operations and their extensions, the decomposition
of a fuzzy set, and mathematical representations of fuzzy sets in terms of a nest
of sets. Towards the end of the chapter, fuzzy sets taking values in [0; 1] are
extended to those on a lattice and a similar investigation is carried out.
According to Cantor, a set consists of some elements which are de�nite. In

other words, for a given element, whether it belongs to the set or not should
be clear. As a consequence, a set can only be employed to describe a concept
which is crisply de�ned. For example, a collection of cities with the population
more than 5 millions forms a set since we can judge that a given city is in this
set or not without vagueness. In traditional mathematics, all the involved con-
cepts ranging all the way from the complex numbers and matrices to geometric
transformations and algebraic structures are in this category. However, in the
real world, mankind often uses concepts which are quite vague. For example,
we say that a man is young or middle-aged, an object is expensive or cheap, a
tomato is red and mature, a number is large or small, a car is slow or fast and
so on. Let us take young as an illustration.
Suppose A is a 20-year-old man. Maybe you think A is certainly young. Now

comes a man B only one day older than A. Of course, B is still young. Then how
about a man only one day older than B? Continuing in this way, you will �nd
it di¢ cult to determine an exact age beyond which a man will be middle-aged.
As a matter of fact, there is no sharp line between young and middle-aged. The
transition from one concept to the other is gradual. This gradualness results in
the vagueness of the concept young, which in return makes the boundary of the
set of all young men unclear.
In 1965, Zadeh introduced the concept of fuzzy sets just in order to represent

this class of sets. Zadeh assigns a number to every element in the universe, which
indicates the degree (grade) to which the element belongs to a fuzzy set. In this
interpretation, everybody has a degree to which he/she is young (eventually
the degree may be 0 or 1). The people with di¤erent ages may have di¤erent
degrees. To formulate this concept of fuzzy set mathematically, we present the
following de�nition.

De�nition 161 Let X be the universe. A mapping A : X �! [0; 1] is called
a fuzzy set on X. The value A(x) of A at x 2 X stands for the degree of
membership of x in A.

The set of all fuzzy sets on X will be denoted by F (X). A(x) = 1 means full
membership, A(x) = 0 means non-membership and intermediate values between
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0 and 1 mean partial membership. A(x) is referred to as a membership function
as x varies in X.

Theorem 162 Let X be a non-empty subset. Then, there exists an isomor-
phism between (P (X) ;\;[; c) and (Ch (X) ;_;^; c) where P (X) is the power-
set of X and Ch (X) is the set of two-valued charactersitic functions on X.

Proof. Let �S : X �! f0; 1g be a characteristic function for a subset S in
Ch (X) : Thus, for each element of P (X), we have an element of Ch (X). Now,
let f : P (X) �! Ch (X) be a mapping such that f (A) = �A.
We will �rst prove that f is bijective. Clearly, f is onto since for each

characteristic function, we can construct a corresponding set. Let A and B be
two sets such that f (A) = f (B). Take x 2 A. Then, �A (x) = 1 = �B (x) =)
x 2 B. Similarly, B � A.
To prove that the structures are preserved, f (A [B) = �A[B = �A _�B =

f (A) _ f (B)
Next, f (A \B) = �A[B = �A ^ �B = f (A) ^ f (B)
Finally, f (Ac) = �Ac = 1� �A = 1� f (A) = f (A)

c

It follows from the isomorphism between (P (X) ;\;[;c ) and (Ch (X) ;_;^;c )
that every subset of X may be regarded as a mapping from X to f0; 1g. In this
sense an ordinary set is also a fuzzy set, whose membership function is just its
characteristic function. Accordingly we shall identify the membership degree
A(x) with the value �A (x) of the characteristic function �A at x when A is an
ordinary set. For the two extreme cases ? (the empty set) and X (the entire
set), the membership functions are de�ned by 8x 2 X, ? (x) = 0 and X (x) = 1,
respectively. In contrast with fuzzy sets, ordinary sets are sometimes termed by
crisp sets in this book.

Example 163 Let O denote old and Y denote young. We limit the scope of
age to X = [0; 100]. Then both O and Y are fuzzy sets that are respectively
de�ned by Zadeh as follows:

O(x) =

( h
1 +

�
x�50
5

��2i�1
if 50 � x � 100

0 otherwise

and

Y (x) =

( h
1 +

�
x�25
5

�2i�1
if 25 � x � 100

1 otherwise

For instance, O(60) = 0:8 and Y (30) = 0:5:

Example 164 As known to us, all the involved quantities are precise in tradi-
tional mathematics. With fuzzy sets, we can model the so-called fuzzy data. For
instance, the fuzzy datum A =�around 1�may be represented by: 8x 2 R,
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A(x) =

8<: x 0 � x � 1
2� x 0 � x � 2
0 otherwise

In the case of in�nite universe, a fuzzy set may be represented by its mem-
bership function as in the above example. If the universe is �nite, say, X =
fx1; x2; :::; xng, the fuzzy setA onX is represented byA = A(x1)=x1+A(x2)=x2+
:::+A(xn)=xn.
For example, the fuzzy set S = several on X = f1; 2; ::: ; 10g may be written

as:
S = 0=1 + 0:6=2 + 1=3 + 1=4 + 1=5 + 0:9=6 + 0:8=7 + 0:7=8 + 0:6=9 + 0=10.
For the sake of conciseness, the terms with degree 0, e.g. the terms 0=1,

0=10 in S, are dropped. As a result,
S = 0:6=2 + 1=3 + 1=4 + 1=5 + 0:9=6 + 0:8=7 + 0:7=8 + 0:6=9. Importantly,

the choice of a membership function is context-dependent. It is clearly di¤erent
that the temperature of a steel-smelting furnace is high and the temperature
of a human body is high. Even in a same context, the choice is dependent on
the observer. It is certainly di¤erent from Zadeh�s if you form the membership
function of the fuzzy concept young.
Next we introduce some set-theoretic operations of fuzzy sets formulated by

Zadeh. Let A and B be two fuzzy sets on X. The union A [ B of A and B is
de�ned by 8x 2 X, (A [B) (x) = max (A (x) ; B (x)) (or simply A(x) _B(x));
The intersection A \ B of A and B is de�ned by 8x 2 X, (A \B) (x) =

min (A (x) ; B (x)) (or simply A(x) ^B(x));
The complement Ac of A is de�ned by 8x 2 X, Ac (x) = 1�A(x).

Remark 165 As in crisp case, the union (intersection) of fuzzy sets A and B
represents �A or (resp. and) B�, and the complement of A means �not A�.

Example 166 Let X = f1; 2; ::: ; 10g: A =small= 1=1+0:8=2+0:6=3+0:4=4+
0:2=5; B =large= 0:2=4 + 0:4=5 + 0:6=6 + 0:8=7 + 1=8 + 1=9 + 1=10:

Then, not small
= Ac = 0:2=2 + 0:4=3 + 0:6=4 + 0:8=5 + 1=6 + 1=7 + 1=8 + 1=9 + 1=10,
not large
= Bc = 1=1 + 1=2 + 1=3 + 0:8=4 + 0:6=5 + 0:4=6 + 0:2=7,
not small and not large
= Ac \Bc = 0:2=2 + 0:4=3 + 0:6=4 + 0:6=5 + 0:4=6 + 0:2=7:

Exercise 167 Assume two fuzzy sets A1 and A2 on X = fx1; x2; x3; x4g are
de�ned by A1 = 0:1=x1+0:9=x2+0:6=x3, A2 = 0:9=x1+0:7=x2+0:6=x3+0:8=x4.
Find Ac1, A1 [A2 and A1 \A2.

Solution 168 Ac1 = 0:1=x1 + 0:3=x2 + 0:4=x3 + 0:8=x4
A1 [A2 = 0:9=x1 + 0:9=x2 + 0:6=x3 + 0:8=x4
A1 \A2 = 0:1=x1 + 0:7=x2 + 0:6=x3
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De�nition 169 If 8x 2 X, A(x) � B(x), then we call that A is a subset of
B or A is contained in B, denoted by A � B. If 8x 2 X, A(x) = B(x), then
A and B are called equal, denoted by A = B. Obviously, A = B i¤ A � B and
B � A. If A 6= ?, A � B and 9x 2 X such that A(x) < B(x), then we say that
A is properly contained in B, denoted by A � B.

It follows immediately from the de�nitions that

Theorem 170 8A;B;C;D 2 F (X);
(1) A \B � A and A � A [B;
(2) A � B () A [B = B () A \B = A;
(3) A � B and C � D =) A [ C � B [D and A \ C � B \D;
(4) A � B =) Bc � Ac.

Proof. (1) (A \B) (x) = min (A (x) ; B (x)) � A (x). Since this is valid for all
x, therefore A \B � A
Similarly, A (x) � max (A (x) ; B (x)) =) A � A [B
(2) A � B () 8x 2 X;A (x) � B (x) () 8x 2 X;max fB(x); A(x)g =

B(x) () A [B = B
and A � B () 8x 2 X;A (x) � B (x) () 8x 2 X;min fB(x); A(x)g =

A(x) () A \B = B
(3) A � B and C � D =) 8x 2 X;A (x) � B (x) and 8x 2 X;C (x) �

D (x) from which we havemax (A (x) ; C (x)) � max (B (x) ; D (x)) andmin (A (x) ; C (x)) �
min (B (x) ; D (x))
(4) A � B =) 8x 2 X;A (x) � B (x) =) 8x 2 X; 1 � B (x) �

1�A (x) =) Bc � Ac

In addition, we have the following important conclusion concerning the fuzzy
set-theoretic operations.

Theorem 171 (F (X);[;\;c ) is a soft algebra, i.e. F (X) satis�es: 8A;B;C 2
F (X),
(1) idempotency: A [A = A; A \A = A;
(2) commutativity: A [B = B [A; A \B = B \A;
(3) associativity: (A [B) [ C = A [ (B [ C); (A \B) \ C = A \ (B \ C);
(4) absorption laws: A [ (A \B) = A; A \ (A [B) = A;
(5) distributivity: A [ (B \ C) = (A [ B) \ (A [ C); A \ (B [ C) = (A \

B) [ (A \ C);
(6) the existence of the greatest and least element: ? � A � X.
(7) involution: (Ac)c = A;
(8) De Morgan laws: (A [B)c = Ac \Bc; (A \B)c = Ac [Bc:

Proof. In each proof, the arguments are valid 8x 2 X; so that the function
notation can be justi�ed in terms of functions.
(1) (A [A) (x)
= max fA (x) ; A (x)g
= max fA (x)g = A (x)
(2) (A [B) (x)
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= max fA (x) ; B (x)g
= max fB (x) ; A (x)g = (B [A) (x)
and (A \B) (x)
= min fA (x) ; B (x)g
= min fB (x) ; A (x)g
= (B \A) (x)
(3) ((A [B) [ C) (x)
= max fmax fA (x) ; B (x)g ; C (x)g
= max fA (x) ; B (x) ; C (x)g
= max fA (x) ;max fB (x) ; C (x)gg
= (A [ (B [ C)) (x)
(4) (A [ (A \B)) (x)
= max fmin fA (x) ; B (x)g ; A (x)g
Assume min fA (x) ; B (x)g = B (x). Then, max fA (x) ; B (x)g = A (x). On

the other hand, if min fA (x) ; B (x)g = A (x), then max fA (x) ; A (x)g = A (x).
Clearly, these are the only two possibilities.

(A \ (A [B)) (x) = min fmax fA (x) ; B (x)g ; A (x)g

Assume max fA (x) ; B (x)g = A (x). Then, the result is true again by idempo-
tency. If max fA (x) ; B (x)g = B (x), then min fB (x) ; A (x)g = A (x)
(5) Since left distributive law implies the right distributive law, we will only

prove one namely A [ (B \ C) = (A [B) \ (A [ C)
(A [ (B \ C)) (x) = max fA (x) ;min fB (x) ; C (x)gg. Now, since we have

real numbers A (x), B (x) and C (x), therefore

min fB (x) ; C (x)g =
�
C (x) if B (x) � C (x)
B (x) if C (x) > B (x)

and similarly for maximum we have

max fA (x) ; Y (x)g =
�
A (x) if A (x) � Y (x)
Y (x) if Y (x) > A (x)

where Y (x) = min fB (x) ; C (x)g. Combining,

max fA (x) ;min fB (x) ; C (x)gg =
�

A (x) if A (x) � min fB (x) ; C (x)g
min fB (x) ; C (x)g if min fB (x) ; C (x)g > A (x)

It is easy to see that maximum will thus distribute over minimum by arguing
on a case-by-case basis (I�m too lazy to; don�t want to get my hands dirty) and
using the Law of Trichotomy to show that max fA (x) ;min fB (x) ; C (x)gg =
min fmax fA (x) ; B (x)g ;max fA (x) ; C (x)gg
Therefore,

max fA (x) ;min fB (x) ; C (x)gg = min fmax fA (x) ; B (x)g ;max fA (x) ; C (x)gg

= (A [B) (x) \ (A [ C) (x)
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(6) By de�nition, 8x 2 X, ? (x) = 0 and X (x) = 1.
Since for any A, A (x) 2 [0; 1], therefore ? (x) � A (x) � X (x)
=) ? � A � X
(7) (Ac)c (x)
= 1� (1�A (x)) = A (x)
=) (Ac)

c
= A

(8) (A [B)c(x) = 1� (A [B)(x)
= 1�max fA (x) ; B (x)g
If A (x) � B (x), then 1�B (x) � 1�A (x) and
min f1�B (x) ; 1�A (x)g = 1�B (x) = 1�max fA (x) ; B (x)g
= min f1�B (x) ; 1�A (x)g
If B (x) � A (x), then 1�A (x) � 1�B (x) and
min f1�B (x) ; 1�A (x)g = 1�A (x) = 1�max fA (x) ; B (x)g
= min f1�B (x) ; 1�A (x)g
Therefore, in either case we have

1�max fA (x) ; B (x)g = min f1�A (x) ; 1�B (x)g

= min fAc (x) ; Bc (x)g
= (Ac \Bc) (x)
=) (A [B)c = (Ac \Bc)
For the second, (A \B)c (x)
= 1� (A \B) (x)
= 1�min fA (x) ; B (x)g
If A (x) � B (x), then 1�B (x) � 1�A (x) and
max f1�B (x) ; 1�A (x)g = 1�A (x) = 1�min fA (x) ; B (x)g
If B (x) � A (x), then 1�A (x) � 1�B (x) and
max f1�B (x) ; 1�A (x)g = 1�B (x) = 1�min fA (x) ; B (x)g
Therefore, 1�min fA (x) ; B (x)g = max f1�B (x) ; 1�A (x)g
= (Ac [Bc) (x)
=) (A \B)c = (Ac [Bc)
From the above proof, we see that properties of (F (X);[;\;c ) are largely

dependent on properties of ([0; 1];max;min;c ) = ([0; 1];_;^;c ) since the set-
theoretic operations are de�ned pointwise. In this sense, [0; 1] is regarded
as the underlying structure set of F (X). As a result, it is not strange that
(F (X);[;\;c ) has the same algebraic structure as ([0; 1];_;^;c ). The partial
order relation � in the soft algebra (F (X);[;\;c ) is �.
Proof. In the proof, again, the argument is valid for any x 2 X. Clearly, for
any A 2 F (X), A (x) � A (x) so that A � A, making � re�exive. Next, if
A � B and B � A, then A (x) � B (x) and B (x) � A (x) so that A (x) =
B (x). Finally, if A � B and B � C, then A (x) � B (x) and B (x) � C (x)
=) A (x) � C (x) =) A � C, making � a bona�de partial order.
Like ([0; 1];_;^;c ), (F (X);[;\;c ) is not a Boolean algebra since it is not

complemented, i.e. A \ Ac = ? and A [ Ac = X do not hold generally. To
illustrate this point, consider the fuzzy set A de�ned by 8x 2 X, A(x) =
0:5. Then 8x 2 X, (A \Ac) (x) = (A [Ac) (x) = 0:5 while ? (x) = 0 and
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X(x) = 1. Consequently, A \ Ac 6= ? and A [ Ac 6= X, which indicates
that neither the law of contradiction nor the law of excluded middle hold. It
is quite natural considering that these two laws are the logical foundation of
traditional mathematics. In this sense, the emergence of fuzzy sets gives birth to
a completely new logic �fuzzy logic, and hence to a completely new mathematics
�mathematics of fuzziness.

Exercise 172 If A;B;C 2 F (X), show that (1) fA \ [(B \ C) [ (Ac \ Cc)]g[
Cc = (A \B \ C) [ Cc and (2) (A \B) [ (B \ C) [ (A \ C) = (A [B) \
(B [ C) \ (A [ C)

Solution 173 fA \ [(B \ C) [ (Ac \ Cc)]g [ Cc
= (A \ (B \ C)) [ (A \ (Ac \ Cc)) [ Cc
= (A \B \ C) [ (A \Ac \ Cc) [ Cc
= (A \B \ C) [ [(A [ Cc) \ (Cc [ (Ac \ Cc))]
= (A \B \ C) [ [(A [ Cc) \ Cc]
= (A \B \ C) [ Cc
(2) (A \B) [ (B \ C) [ (A \ C)
=

Exercise 174 The di¤erence A � B and symmetric di¤erence A M B of two
fuzzy sets A and B are respectively de�ned by A � B = A \ Bc and A M B =
(A�B) [ (B �A). (i) Use A(x) and B(x) to express (A � B)(x) and (A M
B)(x). (ii) Assume A and B are two fuzzy sets on X = fa; b; c; d; e; f; gg de�ned
by A = 0:5=b+0:4=c+1=d+0:7=f , B = 0:3=a+0:9=b+0:4=c+1=d+0:6=e+1=g.
Find A�B and A M B. (iii) Show that (A M B) M C = A M (B M C):

Solution 175 (i) (A � B)(x) = (A \Bc) (x) = min fA (x) ; 1�B (x)g and
(A M B)(x) = max f(A�B) (x) ; (B �A) (x)g
= max fmin fA (x) ; 1�B (x)g ;min fB (x) ; 1�A (x)gg
(ii) A�B = 0:1=b+0:4=c+0:7=f and A M B can be found using the formula

above
(iii) ((A M B) M C)
= f[(A�B) [ (B �A)]� Cg [ fC � [(A�B) [ (B �A)]g
= f[(A \Bc) [ (B \Ac)] \ Ccg [ fC \ [(A \Bc) [ (B \Ac)]cg
= f[((A \Bc) [B) \ ((A \Bc) [Ac)] \ Ccg[fCc [ [(Ac [B) \ (Bc [A)]g
= f(B [A) \ (Bc [B) \ (A [A) \ (Bc [Ac) \ Ccg[fCc [ [((Ac [B) \Bc) [ ((Ac [B) \A)]g
= f(B [A) \ (Bc [B) \A \ (Bc [Ac) \ Ccg[Cc[ (Ac \Bc)[ (B \Bc)[

(Ac \A) [ (B \A)
some magic
= fA \ (Bc [ C) \ (Cc [B)g [ f[(B \ Cc) [ (C \Bc)] \Acg
= fA \ [(B \ Cc) [ (C \Bc)]cg [ f[(B \ Cc) [ (C \Bc)] \Acg
= fA� [(B � C) [ (C �B)]g [ f[(B � C) [ (C �B)]�Ag
= (A M (B M C))
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The union and intersection operations can be extended as follows: For

Ai 2 F (X) where i 2 I, an arbitrary index set,
[
i2I
Ai (x) =

 [
i2I
Ai

!
(x) =

sup fAi (x) j i 2 Ig =
 _
i2I
Ai

!
(x) =

_
i2I
Ai (x) and similarly

\
i2I
Ai (x) =

 \
i2I
Ai

!
(x) =

inf fAi (x) j i 2 Ig =
 ^
i2I
Ai

!
(x) =

^
i2I
Ai (x)

De�nition 176 The set fx j A (x) = 1g is said to be the kernel of A, denoted
by ker (A);

De�nition 177 The set fx j A (x) > 0g is called the support of A, denoted by
supp (A);

De�nition 178 The number
_
x2X

A (x) is called the height of A, denoted by

hgt(A)

De�nition 179 The number
^
x2X

A (x) is referred to as the plinth of A, denoted

by plt(A).

De�nition 180 If ker(A) = ?, then A is called a normal fuzzy set.

For the characteristic function �S pertaining to a subset S of X, we know
that 8x; �A\B (x) = min(�A(x); �B(x)) which justi�es Zadeh�s use of the mini-
mum operator in formulating the intersection of two fuzzy sets. It is also seen
that �A\B (x) = max(�A(x)+�B(x)�1; 0). Hence it is also reasonable to de�ne
the intersection of fuzzy sets A;B 2 F (X) by (A \B) (x) = A (x)B (x) or by
(A \B) (x) = max fA (x) +B (x)� 1; 0g if we consider the intersection of fuzzy
sets as an extension of the intersection of crisp sets. The similar argument exists
for the de�nition of the complement and union. In other words, to extend op-
erations of crisp sets to the fuzzy case, there may be multiple alternative ways.
The de�nition in the previous section is just one of them. More generally, the
operation of intersection, union and complement can be formulated by means
of the so-called t-norms, t-conorms and fuzzy negations, respectively, together
with fuzzy implications and fuzzy equivalencies.

De�nition 181 If � : [0; 1] �! [0; 1] is decreasing and satis�es the boundary
conditions � (0) = 1 and � (1) = 1, then � is called a (fuzzy) negation.

If we de�ne � by 8x 2 [0; 1], � (x) = 1 � x,then � is a negation, which is
called the standard negation.

Example 182 The mapping �i : [0; 1] �! [0; 1] de�ned by 8x 2 [0; 1],

�i (x) =

�
1 x = 0
0 x > 0
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is a negation, which is called the intuitionistic negation; and

�di (x) =

�
0 x = 1
1 x < 1

is also a negation, which is called the dual intuitionistic negation.

Proposition 183 �i (x) � � (x) � �di (x)

Proof. If x = 0 and x = 1, the condition is trivially satis�ed. Assume x 6= 0
and x 6= 1. Since 0 � � (x) � 1, therefore �i (x) � � (x) � �di (x) because
�di (x) = 1 for x 6= 1 and �i (x) = 0 for x 6= 0

De�nition 184 A strictly decreasing continuous negation is called a strict
negation. A strict negation � is called a strong negation if it satis�es the
involution: 8x 2 [0; 1], � (� (x)) = x.

It follows that the intuitionistic and dual intuitionistic negation is not strict
since for x < y < 1, �di (y) � �di (x) and for 0 < x < y, �i (y) � �i (x) because
then �i (y) = �i (x) = 1 and �di (y) = �di (x) = 0

Example 185 The function � : [0; 1] �! [0; 1] such that � (x) = 1 � x2 is a
strict, non-strong negation

Proof. � (0) = 1 � 02 = 1 and � (1) = 1 � 12 = 0. Next, if 0 < x < y < 1,
then y2 < x2 and 1 � y2 < 1 � x2 which implies � (y) < � (x) but � (� (x)) =
1� � (x) = 1�

�
1� x2

�
= x2

De�nition 186 Let � : [a; b] �! [a; b] be a strictly increasing and continuous
function. If � satis�es � (a) = a and � (b) = b, then � is called an automor-
phism on [a; b].

Example 187 �1 (x) = x is an automorphism on [a; b].

Example 188 �2 (x) = x2 is an automorphism on [0; 1].

Example 189 �3 (x) = x2+x�1=4 is an automorphism on [�1=2; 1=2] because
�3 (x) is a quadratic polynomial, making it continuous and �3 (�1=2) = 1=4 �
1=2� 1=4 = �1=2 whereas on the other hand �3 (1=2) = 1=4 + 1=2� 1=4 = 1=2

Lemma 190 Let �1 and �2 be two strict negations. Then there exist two auto-
morphisms � and  on [0; 1] such that �2 =  � �1 � �

Proof. This proof will construct two such automorphisms. Since �1 and �2 are
two continuous self-maps, there must exist �xed points. Let s1; s2 2 [0; 1] be
such two �xed points. That is, �1 (s1) = s1 and �2 (s2) = s2.Since �1 (0) = 1 and
�2 (0) = 1, we have s1 6= 0 and s2 6= 0. Let t = s2=s1. De�ne � : [0; 1] �! [0; 1]
and  : [0; 1] �! [0; 1] as follows:

� (x) =

(
x
t x � s2

��11

�
�2(x)
t

�
x > s2
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and

 (x) =

�
tx x � s1

�2
�
t��11 (x)

�
x > s1

We show that this de�nition of � and  is an automorphism on [0; 1]. If
x = 0, then x � s2; s1 and � (0) = 0 and  (0) = 0. If x = 1, then x > s2; s1

and � (1) = ��11

�
�2(1)
t

�
= ��11 (0) = 1 and  (1) = �2

�
t��11 (1)

�
= �2 (0) = 1.

To show that the functions are continuous, it su¢ ces to show continuity at s1
and s2. lim

x+!s2
� (x) = s2=t = s1 whereas lim

x�!s2
� (x) = lim

x�!s2
��11

�
�2(x)
t

�
=

��11

�
lim

x�!s2

�2(x)
t

�
= ��11

 
lim

x�!s2

�2(x)

t

!
= ��11 (s1) = s1. For the second

function, lim
x+!s1

 (x) = ts1 = s2 and lim
x�!s1

 (x) = lim
x�!s1

�2
�
t��11 (x)

�
=

�2

�
lim

x�!s1
t��11 (x)

�
= �2

�
t��11

�
lim

x�!s1
x

��
= �2

�
t��11 (s1)

�
= �2 (ts1) = �2 (s2) =

s2.
Now, when x < s2, then x=t < s2=t = s1. That is, for x=t < s1, �1 (s1) =

s1 < �1 (x=t) from which we can say that  (�1 (� (x))) =  (�1 (x=t)) =
�2
�
t��11 (x)

�
= �2

�
t��11 (�1 (x=t))

�
= �2 (xt=t) = �2 (x)

On the other hand, when x � s2, �2 (x) � �2 (s2) = s2 = s1t and thus
�2(x)
t � s1 from which we can say that  (�1 (� (x))) =  

�
�1

�
��11

�
�2(x)
t

���
=

 
�
�2(x)
t

�
= �2(x)

t t = �2 (x). Thus, in both cases, the identity holds.

Lemma 191 Let �1 be a strict negation and two automorphisms � and  exist
on [0; 1] such that �2 =  � �1 � �. Then, �2 is a strict negation.

Proof. �2 (0) =  (�1 (� (0))) =  (�1 (0)) =  (1) = 1
�2 (1) =  (�1 (� (1))) =  (�1 (1)) =  (0) = 0
�2 is continuous since the composition of continuous functions is continuous.
Finally, for x � y, � (x) � � (y). Since �1 is strict, therefore for � (x) � � (y),

� (� (y)) < � (� (x)) and �nally �2 (y) =  (�1 (� (y))) �  (�1 (� (x))) = �2 (x)

Theorem 192 The negation � : [0; 1] �! [0; 1] is strict i¤ there exists two
automorphisms  : [0; 1] �! [0; 1] and � : [0; 1] �! [0; 1] such that � (x) =
 (1� � (x))

Proof. The negation �s (x) = 1 � x is strict and therefore we can have  (x)
and � (x) such that � =  (�s (� (x))) =  (1� � (x))
Conversely, assume that � (x) =  (1� � (x)). Then, for x < y, we have

� (x) < � (y) =) 1 � � (y) < 1 � � (x) =) � (y) =  (1� � (y)) <
 (1� � (x)) = � (x) implying that � is strictly decreasing.

Lemma 193 Let N1 and N2 be two strong negations. Then there exists an
automorphism � on [0; 1] such that N2 = ��1 �N1 � �.
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Proof. The automorphism � (x) = x does a perfect job for this but this identity
map is trivial and uninteresting. Notice that in the above proof,  (x) and � (x)
are inverses of each other.

Theorem 194 The mapping N : [0; 1] �! [0; 1] is a strong negation i¤ there
exists automorphism  : [0; 1] �! [0; 1] such that N (x) =  �1 (1�  (x))

Proof. This is a direct consequence of using N = N2 and N1 = 1 � x
in the above lemma. Conversely, we start to show that N is a negation if
N (x) =  �1 (1�  (x)). N (0) =  �1 (1�  (0)) =  �1 (1� 0) =  �1 (1) = 1.
Similarly, N (1) =  �1 (1�  (1)) =  �1 (1� 1) =  �1 (0) = 0. To show that
N is strict, let x < y. Then,  (x) <  (y)

=) 1�  (y) < 1�  (x)
=)  �1 (1�  (y)) = N (y) <  �1 (1�  (x)) = N (x).
Finally, to show that N is strong, we show that N is a self-involution. Take

N1 = 1� x. Then, N�1 =
�
 �1N1 

��1
=  �1 (N1)

�1 �
 �1

��1
=  �1N�1

1  =

 �1N1 = N since N�1
1 (x) = N (x) = 1� x

It follows that every strong negationN can be expressed asN (x) =  �1 (1�  (x)),
where  is an automorphism on [0:1], which is called a generator of N . The
strong negationN with the generator  will be denoted byN . Generally speak-
ing, generator of a strong negation is not unique. For example, both  (x) = x
and

 (x) =

( p
x=2 x < 0:5

1�
q

1�x
2 x � 0:5

are generators of the standard negation N (x) = 1� x

De�nition 195 A mapping T : [0; 1] � [0; 1] �! [0; 1] is called a triangular
norm (t-norm) or a conjunction, if it satis�es:
(1) symmetry:T (x; y) = T (y; x) whenever x; y 2 [0; 1];
(2) monotonicity:T (x1; y1) � T (x2; y2) whenever x1 � x2 and y1 � y2;
(3) associativity:T (T (x; y); z) = T (x; T (y; z)) whenever x; y; z 2 [0; 1];
(4) boundary condition:T (1; x) = x whenever x 2 [0; 1].

Example 196 Tmin (x; y) = x ^ y

Example 197 TL (x; y) = max f0; x+ y � 1g (Lukasiewicz t-norm)

Example 198 T0 (x; y) =

8<: x if y = 1
y if x = 1
0 otherwise

Example 199 T� (x; y) = xy

De�nition 200 Let ' be an automorphism on [0; 1] and T a t-norm. De�ne
T' (x; y) = '�1T (' (x) ; ' (y)) 8x; y 2 [0; 1]. Then, T' is a t-norm, called
'�transform of T
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Proposition 201 T' (x; y) is a t-norm

Proof. (1) T' (x; y) = '�1T (' (x) ; ' (y)) = '�1T (' (y) ; ' (x)) = T' (y; x)
(2) x1 � x2 and y1 � y2, then ' (x1) � ' (x2) and ' (y1) � ' (y2) so that

T (' (x1) ; ' (y1)) � T (' (x2) ; ' (y2))
=) '�1T (' (x1) ; ' (y1)) � '�1T (' (x2) ; ' (y2))
=) T' (x1; y1) � T' (x2; y2)
(3) T' (T' (x; y) ; z)
= '�1T

�
''�1T (' (x) ; ' (y)) ; ' (z)

�
= '�1T (' (x) ; (T' (y) ; ' (z)))
= '�1T

�
' (x) ; ''�1 (T' (y) ; ' (z))

�
= '�1T (' (x) ; ' (T' (x; y)))
= T' (x; T' (y; z))
(4) T' (1; x)
= '�1 (T (' (1) ; ' (x)))
= '�1 (T (1; ' (x)))
= '�1' (x) = x

Proposition 202 T0 � TL � T� � Tmin

Proof. If x = y = 1, then the inequality holds. If y = 1 for any x and x = 1 for
any y, then the inequality holds. Assume that x; y 6= 1. Then, T0 (x; y) = 0 �
max f0; x+ y � 1g � xy � min fx; yg = Tmin (x; y)

Proposition 203 T0 � T � Tmin holds for any t-norm T .

Proof. 8x; y 2 [0; 1], x � x and y � 1 so that T (x; y) � T (x; 1) = x. Similarly,
x � 1; y � y so that T (x; y) � T (1; y) = y. Hence, T (x; y) � x^ y = Tmin(x; y).
If x = 1 or y = 1, then T (x; y) = T0(x; y) by boundary condition and symmetry.
If x; y 6= 1, then T0(x; y) = 0 � T (x; y). In any case T0 � T
So the set of all t-norms is bounded with the greatest t-norm Tmin and the

least t-norm T0.

Proposition 204 T (x; 0) = 0 8x

Proof. T (x; y) � 0 holds trivially. For converse, note that since for any T , we
have T0 � T � Tmin and Tmin (x; 0) = 0, therefore T (x; 0) � 0

Proposition 205 If a t-norm satis�es idempotency: T (x; x) = x 8x 2 [0; 1],
then T = Tmin.

Proof. For any T , we must have T � Tmin. To prove the converse, Tmin (x; y) =
x ^ y = T (x ^ y; x ^ y) � T (x; y) since x � x ^ y and y � x ^ y.

De�nition 206 A mapping S from [0; 1]� [0; 1] to [0; 1] is called a triangular
conorm (t-conorm) or a disjunction, if it satis�es:
(1) symmetry: S(x; y) = S(y; x) whenever x; y 2 [0; 1];
(2) monotonicity: S(x1; y1) � S(x2; y2) whenever x1 � x2 and y1 � y2;
(3) associativity: S(S(x; y); z) = S(x; S(y; z)) whenever x; y; z 2 [0; 1];
(4) boundary condition: S(0; x) = x whenever x 2 [0; 1].
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Remark 207 Let T be a t-norm and S be a t-conorm. From an algebraic view,
both ([0; 1]; T ) and ([0; 1]; S) are semigroups with identities 1 and 0 respectively,
and thus they are commutative monoids.

De�nition 208 Let � be an automorphism on [0; 1] and S a t-conorm. De-
�ne S� by: 8x; y 2 [0; 1] such that S�(x; y) = ��1S (� (x) ; � (y)). This is the
��transform of the t-conorm

Proof. (1) S' (x; y) = '�1S (' (x) ; ' (y)) = '�1S (' (y) ; ' (x)) = S' (y; x)
(2) x1 � x2 and y1 � y2, then ' (x1) � ' (x2) and ' (y1) � ' (y2) so that

S (' (x1) ; ' (y1)) � S (' (x2) ; ' (y2))
=) '�1S (' (x1) ; ' (y1)) � '�1S (' (x2) ; ' (y2))
=) S' (x1; y1) � S' (x2; y2)
(3) S' (S' (x; y) ; z)
= '�1S

�
''�1S (' (x) ; ' (y)) ; ' (z)

�
= '�1S (' (x) ; (S' (y) ; ' (z)))
= '�1S

�
' (x) ; ''�1 (S' (y) ; ' (z))

�
= '�1S (' (x) ; ' (S' (x; y)))
= S' (x; S' (y; z))
(4) S' (0; x)
= '�1 (S (' (0) ; ' (x)))
= '�1 (S (0; ' (x)))
= '�1' (x) = x

Proposition 209 Let T be a t-norm and � a strict negation. De�ne S : [0; 1]�
[0; 1] �! [0; 1] S(x; y) = ��1T (� (x) ; � (y)). Then S is a t-conorm

Proof. (1) S (x; y) = ��1T (� (x) ; � (y)) = ��1T (� (y) ; � (x)) = S (y; x)
(2) x1 � x2 and y1 � y2, then � (x2) � � (x1) and � (y2) � � (y1) so that

T (� (x2) ; � (y2)) � T (� (x1) ; � (y1))
=) ��1T (� (x1) ; � (y1)) � ��1T (' (x2) ; ' (y2))
=) S (x1; y1) � S (x2; y2)
(3) S (S (x; y) ; z)
= ��1T

�
���1T (� (x) ; � (y)) ; � (z)

�
= ��1T (� (x) ; (T� (y) ; � (z)))
= ��1T

�
� (x) ; ���1 (T� (y) ; � (z))

�
= ��1T (� (x) ; � (S (x; y)))
= S (x; S (y; z))
(4) S (0; x)
= ��1 (T (� (0) ; � (x)))
= ��1 (T (1; � (x)))
= ��1 (� (x)) = x
Thus, we can construct the following t-conorms from the given t-norm

Example 210 Smax (x; y) = ��1Tmin (� (x) ; � (y))
= ��1 (� (x) ^ � (y))
= ��1 ((1� x) ^ (1� y))
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= ��1 (min f1� x; 1� yg)
= 1�min f1� x; 1� yg
= max fx; yg

Example 211 SL (x; y) = ��1TL (� (x) ; � (y))
= ��1 (max f0; � (x) + � (y)� 1g)
= ��1 (max f0; 1� x+ 1� y � 1g)
= ��1 (max f0; 1� x� yg)
= 1�max f0; 1� x� yg
= min f1; x+ yg

Example 212 S0 (x; y) = ��1T0 (� (x) ; � (y)) = ��1

0@8<: � (x) if � (y) = 1
� (y) if � (x) = 1
0 otherwise

1A
= ��1

0@8<: � (x) if y = 0
� (y) if x = 0
0 otherwise

1A =

8<: x if y = 0
y if x = 0
1 otherwise

Example 213 S� (x; y) = ��1T� (� (x) ; � (y)) = ��1 (� (x) � (y))
= ��1 [(1� x) (1� y)] = ��1 [1� (x+ y � xy)] = x+ y � xy

Proposition 214 S0 � SL � S� � Smax

Proof. Since T0 (� (x) ; � (y)) � TL (� (x) ; � (y)) � T� (� (x) ; � (y)) � Tmin (� (x) ; � (y))
and ��1 reverses order so we can apply this to complete the proof.

Proposition 215 S0 � S � Smax

Proof. Again, since T0 (� (x) ; � (y)) � T (� (x) ; � (y)) � Tmin (� (x) ; � (y)) for
any T , therefore S0 � S � Smax

Proposition 216 S (x; 1) = 1

Proof. S (x; 1) = ��1 (T (� (x) ; � (1))) = ��1 (T (� (x) ; 0)) = ��1 (0) = 1

Proposition 217 If a t-conorm S satis�es idempotency, then S = Smax

Proof. If S (x; x) = x = ��1T (� (x) ; � (x))
Then, x = ��1T (� (x) ; � (x))
=) � (x) = T (� (x) ; � (x))
=) x = T (x; x)
=) T = Tmin
=) S = Smax
We have the following propositions concerning the absorption law:

Proposition 218 Let T and S be a t-norm and a t-conorm respectively. If
8x; y 2 [0; 1], T (S(x; y); x) = x, then T = Tmin.

46



Proof. Since T (S(x; y); x) = x 8x; y, it is particularly valid for y = 0 in which
case we have the idempotent law T (S(x; 0); x) = T (x; x) = x so that T = Tmin

Proposition 219 Let T and S be a t-norm and a t-conorm respectively. If
8x; y 2 [0; 1], S(T (x; y); x) = x, then S = Smax

Proof. Again, we choose y = 1 to get S(T (x; 1); x) = S (x; x) = x so that
S = Smax
Another similar proposition holds for the distributive law

Proposition 220 Let T and S be a t-norm and a t-conorm respectively. If
8x; y; z 2 [0; 1], S(x; T (y; z)) = T (S(x; y); S(x; z)), then T = Tmin.

Proof. If we let z = 0, then S(x; T (y; 0)) = T (S(x; y); S(x; 0))
=) S(x; 0) = T (S(x; y); x)
=) x = T (S(x; y); x)
=) T = Tmin

Proposition 221 Let T and S be a t-norm and a t-conorm respectively. If
8x; y; z 2 [0; 1], T (x; S(y; z)) = S(T (x; y); T (x; z)), then S = Smax.

Proof. Take z = 1. Then, T (x; S(y; 1)) = S(T (x; y); T (x; 1))
=) T (x; 1) = S(T (x; y); x)
x = S(T (x; y); x)
=) S = Smax
Thus, the distributive laws imply the absoprtion laws which in turn imply

the idempotent law.

De�nition 222 Let T and S be a t-norm and a t-conorm respectively and � a
strict negation. If 8x 2 [0; 1], �(S(x; y)) = T (�(x); �(y)), then (T; S; �) is called
a De Morgan triple.

De�nition 223 Let A;B be fuzzy sets on X and (T; S; �) a De Morgan triple.
The complement Ac� of A under �, the intersection A\TB of A and B under t-
norm T and union A[SB of A and B under t-conorm S are respectively de�ned
by: 8x 2 X; Ac� (x) = �A (x), (A\T B)(x) = T (A(x); B(x)) and (A[S B)(x) =
S(A(x); B(x)):

If T = Tmin, �(x) = 1 � x and S = Smax, then (A \T B)(x) = A(x) ^ B(x)
and (A [S B)(x) = A(x) _ B(x), which are Zadeh�s intersection and union. If
T = T�, � and S = S�, then (A \T B)(x) = A(x)B(x) and (A [S B)(x) =
A(x) + B(x) � A(x)B(x). If T = TL, �(x) = 1 � x and S = SL, then (A \
TB)(x) = max f0; A(x) +B(x)� 1g and (A [S B)(x) = min f1; A(x) +B(x)g.

Proposition 224 If (T; S; �) is a De Morgan triple, then the algebraic system
(F (X);[S ;\T ; c) has the following properties:
(1) A \T B � A � A [S B;
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(2) A \T B = B \T A;A [S B = B [S A
(3) (A \T B) \T C = A \T (B \T C); (A [S B) [S C = A [S (B [S C);
(4) A \T ? = ?; A [S ? = A;A \T X = A;A [S X = X;
(5) (A [S B)c� = Ac� \T Bc�. If � is a strong negation, then (A \T B)c� =

Ac� [S Bc�

Proof. This proof is valid 8x so that the propositions hold.
(1) (A \T B) (x) = T (A (x) ; B (x))
� Tmin (A (x) ; B (x)) � A (x) = S (A (x) ; 0) � S (A (x) ; B (x))
(2) (A \T B) (x) = T (A (x) ; B (x)) = T (B (x) ; A (x)) = B \T A
(A [S B) (x) = S (A (x) ; B (x)) = S (B (x) ; A (x)) = (B [S A) (x)
(3) (A\TB)\TC = T (T (A (x) ; B (x)) ; C (x)) = T (A (x) ; T (B (x) ; C (x))) =

A \T (B \T C)
(A [S B) [S C = S (S (A (x) ; B (x)) ; C (x)) = S (A (x) ; S (B (x) ; C (x))) =

A [S (B [S C);
(4) (A \T ?) (x) = T (A (x) ;? (x)) = T (A (x) ; 0) = 0 = ? (x)
(A [S ?) (x) = S (A (x) ;? (x)) = S (A (x) ; 0) = A (x)
(A \T X) (x) = T (A (x) ; X (x)) = T (A (x) ; 1) = A (x)
(A [S X) (x) = S (A (x) ; X (x)) = S (A (x) ; 1) = 1 = X (x)
(5) (A[SB)c�(x) = �((A[SB)(x)) = T (�(A(x)); �(B(x))) = T (Ac�(x); B

c
�(x)) =

(Ac� \T Bc�)(x):
If � is a strong negation, (A\TB)c�(x) = �((A\TB)(x)) = �(T (A(x); B(x))) =

�(�(S(Ac�(x); B
c
�(x)))) = (A

c
� [S Bc�)(x):

De�nition 225 Let I : [0; 1]� [0; 1] �! [0; 1]. If I(x; y) is decreasing in x and
increasing in y (usually I is called hybrid monotonous) and satis�es I(1; 0) =
0; I(0; 0) = I(1; 1) = 1, then I is called a fuzzy implication.

A fuzzy implication is an extension of the ordinary implication in classic
logic.

Proposition 226 I (0; 1) = 1

Proof. For 0 � 1, I (1; 1) � I (0; 1)
That is, 1 � I (0; 1) =) I (0; 1) = 1

Example 227 I1(x; y) = max(1� x; y)

Example 228 I2(x; y) = min(1� x+ y; 1)

Example 229 I3(x; y) =

�
1 x � y
y=x x > y

1

Proposition 230 If I is a fuzzy implication and � is a negation, then I de�ned
by 8x; y 2 [0; 1], Î(x; y) = I(�(y); �(x)) is a fuzzy implication as well.
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Proof. For x1 � x2, � (x2) � � (x1) and y1 � y2, � (y2) � � (y1) so that
Î(x2; y1) = I(�(y1); �(x2)) � I(�(y2); �(x1)) = Î(x1; y2)

Î(1; 0) = I(�(0); �(1)) = I(1; 0) = 0
Î(1; 1) = I(�(1); �(1)) = I(0; 0) = 1
Î(0; 0) = I(�(0); �(0)) = I(1; 1) = 1

Proposition 231 A mapping I : [0; 1] � [0; 1] �! [0; 1] is a fuzzy implication
i¤ it satis�es the following:
(I1)8x � z; I(x; y) � I(z; y);
(I2)8y � z; I(x; y) � I(x; z);
(I3)8x 2 [0; 1]; I(0; x) = 1;
(I4)8x 2 [0; 1]; I(x; 1) = 1;
(I5)I(1; 0) = 0:

De�nition 232 Let S be a t-conorm and N a strong negation. Then, I de�ned
by 8x 2 [0; 1], I(x; y) = S(N(x); y) is called an S-implication.

Proposition 233 I(x; y) = S(N(x); y) is a fuzzy implication.

Example 234 S = Smax; N(x) = 1� x; I(x; y) = max(1� x; y):

Example 235 S = S�; N(x) = 1� x; I(x; y) = 1� x+ xy

Example 236 S = SL; N(x) = 1� x; I(x; y) = min(1� x+ y; 1):

Theorem 237 An implication I is an S-implication i¤ I satis�es the following
properties:
(1) 8x 2 [0; 1], I(1; x) = x (the so-called neutrality principle);
(2) 8x; y; z 2 [0; 1] I(x; I(y; z)) = I(y; I(x; z)) (the so-called exchange prin-

ciple);
(3) There exists a strong negation N such that 8x; y 2 [0; 1]; I(x; y) =

I(N(y); N(x)):

Proof. Necessity. If I(x; y) = S(N(x); y)),where S is t-conorm and N a
strong negation, then I(1; x) = S(0; x) = x, and thus (1) is valid. In addition,
I(x; I(y; z)) = S(N(x); I(y; z)) = S(N(x); S(N(y); z)) = S(S(N(y); z); N(x)) =
S(N(y); S(z;N(x))) = I(y; I(x; z)). Hence (2) is true. Finally, I(N(y); N(x)) =
S(y;N(x)) = I(x; y), i.e. (3) is true.
Su¢ ciency. Suppose that I satis�es (1), (2) and (3). Let S(x; y) = I(N(x); y).

We prove that S is a t-conorm. Firstly, S(0; y) = I(N (0) ; y) = I(1; y) =
y, i.e. the boundary condition is satis�ed. Since S(x; y) = I(N(x); y) =
I(N(y); N (N (x))) = I(N(y); x) = S(y; x) by (3), S is symmetric. Mean-
while, 8x; y; z 2 [0; 1]; S(x; S(y; z)) = I(N(x); S(y; z)) = I(N(x); I(N(y); z)) =
I(N(x); I(N(z); y)) (by (3))= I(N(z); I(N(x); y)) (by (2))= I(N(I(N(x); y)); z)
(by (3)) = I(N(S(x; y)); z) = S(S(x; y); z). Hence S is associative. In summary,
S is a t-conorm. Noticing that I(x; y) = S(N(x); y), I is an S-implication.
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De�nition 238 Let T be a t-norm. Then IT de�ned by: 8x; y 2 [0; 1]; IT (x; y) =
supfz j T (x; z) � yg is called an R-implication.

The de�nition is based on the following equality of crisp sets: Ac [ B =
(AnB)c = [fXjA\X � Bg. It should be pointed out that IT is indeed a fuzzy
implication.
Proof. IT (0; 0) = supfz j T (0; z) = 0 � yg = 1

IT (1; 1) = supfz j T (1; z) = z � yg = 1
IT (1; 0) = supfz j T (1; z) = z � 0g = 0
To show that I is decreasing in x and increasing in y, take x2 � x1 and

y1 � y2
Then, IT (x1; y1)
= supfz j T (x1; z) � y1g
= supfz j T (x2; z) � T (x1; z) � y1g
= supfz j T (x2; z) � y1g
� supfz j T (x2; z) � y2g
= IT (x2; y2)

Example 239 Let T = Tmin. Then we have the Godel implication: IT (x; y) =�
1 x � y
y x > y

Example 240 Let T = T�. Then we have the Goguen implication: IT (x; y) =�
1 x � y
y=x x > y

Example 241 Let T = TL. Then we have the Lukasiewicz implication: IT (x; y) =
min(1� x+ y; 1).

De�nition 242 A mapping E : [0; 1]� [0; 1] �! [0; 1] is called a fuzzy equiv-
alence if it satis�es that
(E1)8x; y 2 [0; 1]; E(x; y) = E(y; x);
(E2) E(0; 1) = E(1; 0) = 0;
(E3) 8x 2 [0; 1]; E(x; x) = 1;
(E4) E(x; y) � E(x1; y1) whenever x � x1 � y1 � y.

Example 243 Godel equivalence: E(x; y) =
�

1 x = y
min (x; y) x 6= y

Example 244 Goguen equivalence: E(x; y) =

(
1 x = y = 0

min(x;y)
max(x;y) otherwise

Example 245 Lukasiewicz equivalence: E(x; y) = 1� jx� yj

Proposition 246 The mapping E : [0; 1] � [0; 1] �! [0; 1] is a fuzzy equiva-
lence i¤ there exists a fuzzy implication I such that 8x 2 [0; 1]; I(x; x) = 1 and
E(x; y) = min(I(x; y); I(y; x)):
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Proof. ( =) ) Let I(x; y) =
�

1 x � y
E (x; y) x > y

. We verify that I is a fuzzy

implication. Firstly, we show that I(x; y) � I(z; y) whenever x � z. If x �
y; I(x; y) = 1 and the desired equality trivially holds. If x > y, then y < x � z,
I(x; y) = E(x; y) � E(z; y) = I(z; y). Hence I(�; y) is decreasing in x. To
show that I(x;�) is increasing in y, assume y � z. If y � x, then x � y and
x � z so that I (x; y) = 1 � 1 = I (x; z). If x > y, then either z � x > y
or x > z � y. In the �rst case, I (x; z) = 1 � I (x; y). In the second case,
I (x; z) = E (x; z) � E (x; y) = I (x; y) :

I (0; 1) = 1
I (1; 1) = 1
I (0; 0) = 1 trivially hence I is an implication.
When x � y; I(x; y) = 1, and I(y; x) = E(y; x) = E(x; y) = I (x; y). Hence,

E(x; y) = min(I(x; y); I(y; x)). In the case of x > y, then I (x; y) = E (x; y) =
E (y; x) = I (y; x) and hence E(x; y) = min(I(x; y); I(y; x))
((= )E(x; y) = min(I(x; y); I(y; x)) = min(I(y; x); I(x; y)) = E (y; x) :
E (x; x) = min(I(x; x); I(x; x)) = min(I(x; x)) = I (x; x) = 1
E(0; 1) = min(I(0; 1); I(1; 0)) = min (1; 0) = 0 = E (1; 0) by symmetry of E
Take x � x1 � y1 � y. Then, E(x; y) = min(I(x; y); I(y; x))
� min (I (x; y) ; I (y1; x1))
� I (y1; x1)
Notice that I (y1; x1) � I (x1; y1) so that I (y1; x1) � min (I (x1; y1) ; I (y1; x1)) =

E (x1; y1)

Corollary 247 A mapping E : [0; 1] � [0; 1] �! [0; 1] is a fuzzy equivalence
i¤ there exists a fuzzy implication I such that 8x 2 [0; 1]; I(x; x) = 1 and
E(x; y) = I(max(x; y);min(x; y))

Proof. ((= ) E(x; x) = I(max(x; x);min(x; x)) = I (x; x) = 1
E (0; 1) = I(max(0; 1);min(0; 1)) = I(1; 0) = 0
E (1; 0) = I(max(1; 0);min(1; 0)) = I(1; 0) = 0
Let x � x1 � y1 � y. Then,
E(x; y) = I(max(x; y);min(x; y)) � I(max(x1; y1);min(x1; y1)) = E(x1; y1)
( =) ) Consider E (x; y) = I(max(x; y);min(x; y)) = min(I(x; y); I(y; x)).
Then, E (x; x) = 1 = I (x; x)
Clearly, I (0; 0) = I (1; 1) = 1
Next, E (0; 1) = 0 = I (1; 0) and also E (1; 0) = I (0; 1) = 0
Finally, let x � x1 � y1 � y
Then, E (x; y) � E (x1; y1)
=) I (max (x; y) ;min (x; y)) = I (y; x) � I (max (x1; y1) ;min (x1; y1)) =

I (y1; x1) so that I is decreasing in x and increasing in y.

De�nition 248 Let A be a fuzzy set on X. For � 2 [0; 1], the �-cut A� of A
is de�ned as A� = fxjA(x) � �g, and the strong �-cut Â� of A is de�ned as
A�: = fxjA(x) > �g
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Proposition 249 Â� � A� (8� 2 [0; 1]); A0 = X, Â1 = ?, A1 = ker(A) and
Â0 = supp(A)

Proof. If x 2 Â�, then x > � =) x � � =) x 2 A�
A0 = fxjA (x) � 0g = X
A1 = fxjA (x) > 1g = ?
A1 = fxjA (x) � 1g = fxjA (x) = 1g = ker(A)
A0 = fxjA (x) > 0g = supp(A)

Proposition 250 Let A;B;Ai; Bi 2 F (X) (i 2 I).Then (A [B)� = A� [B�,
(A \B)� = A� \B�

Proof. If x 2 (A [B)�, then (A [B) (x) � �
=) A (x) _B (x) � �
=) A (x) � � or B (x) � �
=) x 2 A� or x 2 B�
Conversely, x 2 A� [B�
=) x 2 A� or x 2 B�
=) A (x) � � or B (x) � �
=) A (x) _B (x) � �
=) (A [B) (x) � �
=) x 2 (A [B)�
Next, x 2 (A \B)� () (A \B) (x) � �
() A (x) � � and B (x) � �
() x 2 A� \B�

Proposition 251 Let A;B;Ai; Bi 2 F (X) (i 2 I). (Â [ B)� = Â� [ B�,
(Â \B)� = Â� \B�.

Proof. The proof is nearly same as above: If x 2 (Â[B̂)�, then (Â[B̂) (x) > �
=) Â (x) _ B̂ (x) > �
=) Â (x) > � or B̂ (x) > �
=) x 2 Â� or x 2 B̂�
Conversely, x 2 Â� [ B̂�
=) x 2 Â� or x 2 B̂�
=) Â (x) > � or B̂ (x) > �
=) Â (x) _ B̂ (x) > �
=) (Â [ B̂) (x) > �
=) x 2 (Â [ B̂)�
x 2 (Â \ B̂)� () (Â \ B̂) (x) > �
() Â (x) > � and B̂ (x) > �
() x 2 Â� \ B̂�

Proposition 252 Let A;Ai 2 F (X) (i 2 I)
[
i2I
(Ai)� �

 [
i2I
Ai

!
�

,

 \
i2I
Ai

!
�

=\
i2I
(Ai)�,
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Proof. x 2
[
i2I
(Ai)�

=) 9i 2 I, such that x 2 (Ai)�
=) 9i 2 I, Ai(x) � �
=) sup

i2I
Ai(x) � �

=) x 2
[
i2I
Ai

Next, for

 \
i2I
Ai

!
�

=
\
i2I
(Ai)�

x 2
 \
i2I
Ai

!
�

()
 \
i2I
Ai

!
(x) � �

() Ai (x) � � 8i 2 I
() x 2 (Ai)� 8i 2 I
() x 2

\
i2I
(Ai)� 8i 2 I

The converse of the �rst part of the proposition does not hold:
Let An(n = 1; 2; :::) be fuzzy sets on a universal set X, de�ned by 8x 2 X,

An(x) = 0:5� 1=n+ 1. Put � = 0:5. Then 8x 2 X and n = 1; 2;...; An(x) < �

and hence (An)� = ?. As a consequence,
1[
n2I

(An)� = ?

However,

 1[
n2I

An

!
�

= sup
n
An(x) = 0:5 and hence x 2

1[
n2I

(An)� for every

x. Therefore,
1[
n2I

(An)� = X. Clearly,
[
i2I
(Ai)� 6=

 [
i2I
Ai

!
�

Proposition 253

 [
i2I
Âi

!
�

=
[
i2I

�
Âi

�
�
,

 \
i2I
Âi

!
�

�
\
i2I
(Âi)�

Proof. x 2
[
i2I
(Âi)�

() 9i 2 I, such that x 2 (Âi)�
() 9i 2 I, Âi(x) > �
() sup

i2I
Ai(x) > �

() x 2
[
i2I
Âi

Next, for

 \
i2I
Âi

!
�

�
\
i2I
(Âi)�

x 2
 \
i2I
Âi

!
�

=)
 \
i2I
Âi

!
(x) > �
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=) Âi (x) > � 8i 2 I
=) x 2

�
Âi

�
�
8i 2 I

=) x 2
\
i2I

�
Âi

�
�
8i 2 I

The converse of the second part of the proposition does not hold:
Let Ân(n = 1; 2; :::) be fuzzy sets on a universal set X, de�ned by 8x 2 X,

Ân(x) = 0:5�1= (n+ 1). Put � = 0:5. Then 8x 2 X and n = 1; 2;...; Ân(x) < �

and hence
�
Ân

�
�
= ?. As a consequence,

1\
i2I

�
Ân

�
�
= ?

However,

 1\
i2I
An

!
�

= inf
n
An(x) = 0:5 and hence x 2

1\
i2I
(An)� for every x.

Therefore,
1\
i2I
(An)� = X. Clearly,

1\
i2I
(Ai)� 6=

 1\
i2I
Ai

!
�

Proposition 254 Let A;Ai 2 F (X) (i 2 I). If �1 < �2; then A�2 � A�1 ,

A�2 � Â�1 and Â�2 � Â�1

Proof. x 2 A�2
=) A (x) � �2 > �1
=) A (x) � �1 and A (x) > �1
=) x 2 Â�1 and x 2 A�1
x 2 Â�2
=) A (x) > �2 > �1
=) x 2 Â�1

Proposition 255 Let A;Ai 2 F (X) (i 2 I). Let � =
_
i2I
�i; � =

^
i2I
�i: Then\

i2I
A�i = A�,

[
i2I
A�i = A� : Particularly;

\
�<�

A� = A� and
[
�>�

A� = A�.

Proof. x 2
\
i2I
A�i

() A (x) 2 A�i8 (i 2 I)
() A (x) � �i8 (i 2 I)
() A (x) � sup

i
�i

() x � �
() x 2 A�
For the second equality,
x 2

[
i2I
A�i

() 9i 2 I such that x 2 A�i
() 9i 2 I such that x � �i
() A (x) � inf

i
�i
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() A (x) � �
() x 2 A�

Proposition 256 Let A;Ai 2 F (X) (i 2 I). (Ac)� = (A1��)
c,
�
Âc
�
�
=�

Â1��

�c
Proof. x 2 (A1��)c

() x 62 A1��
() A (x) < 1� �
() Ac (x) � �
() x 2 (Ac)�
For the second,

x 2
�
Â1��

�c
() x 62 Â1��
() Â (x) � 1� �
() Âc (x) > �

() x 2
�
Âc
�
�

Proposition 257 �1 < �2 implies that �1A � �2A

Proof. �1A (x) < �2A (x) by hypothesis
so that �1A � �2A

Proposition 258 A1 � A2 implies that �A1 � �A2

Proof. By hypothesis, A1 (x) � A2 (x)
so that �A1 (x) � �A2 (x)
=) �A1 � �A2

Proposition 259 For every A 2 F (X); A =
S

�2[0;1]
�A�

Proof. 8x 2 X; S
�2[0;1]

�A�

!
(x) =

 W
�2[0;1]

�A�

!
(x) =

 W
�2[0;1]

� ^A�

!

= max

( W
x2A�

(� ^A� (x)) ;
W

x62A�

(� ^A� (x))
)

=
W

��A(x)
� = A(x):

Corollary 260 Let A,B 2 F (X). Then A = B () 8� 2 [0; 1], A� = B�
() 8� 2 [0; 1], Â� = B̂�
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Proof. A = B
()

S
�2[0;1]

�A� =
S

�2[0;1]
�B�

() 8� 2 [0; 1], A� = B�
() 8� 2 [0; 1], Â� = B̂�
A fuzzy set and all its (strong) �-cuts thus are uniquely determined by each

other. As a matter of fact, it can be seen that A(x) =
W

x62A�

� so we can �nd the

fuzzy set A if its (strong) �-cuts are given for all � 2 [0; 1]:

2.2 L-Fuzzy sets

In the de�nition of a fuzzy set, the range of the involved mapping is con�ned to
the totally ordered set [0; 1]. From the mathematical view, this restriction is not
natural. In this section, [0; 1] is extended to a general lattice L, which leads to
the so-called L-fuzzy sets. As in fuzzy sets, some operations such as union and
intersection may be formed by employing the concept of supremum and in�mum
in L. However, a generalization of the complement operation needs some extra
e¤orts since there is no operation in L available for formulating complement. In
view of this, we start with the concept of a pseudo-complement.

De�nition 261 Let (P;�) be a poset. A mapping � : P �! P such that
(1) 8�; � 2 P , � � � implies that � (�) � � (�),
(2) 8� 2 P , � (� (�)) = �,
is called a pseudo-complement on (P;�)

Clearly, every strong negation is a pseudo-complement on ([0; 1] ;�) and
� (A) = Ac (8A 2 P(X)) is a pseudo-complement on (P(X);�).

Example 262 The complement c in a soft algebra (L;_;^; c) is a pseudocom-
plement. Since the complement c in every soft algebra is involutive, it su¢ ces
to prove that 8�; � 2 P , � � � implies that �c � �c: Indeed, when � � �,

�c � �c _ �c = (� ^ �)c = �c

The complement in a Boolean algebra is also a pseudo-complement since
every Boolean algebra is a soft algebra.

Proposition 263 If (P;�) is a bounded poset with the greatest element 1 and
the least element 0 and if � is a pseudo-complement on (P;�), then � (1) = 0
and � (0) = 1.

Proof. Trivially, 0 � � (1). Using this, we get � (0) � � (� (1)) = 1
Trivially, � (0) � 1. Using this, we get 0 = � (� (0)) � � (1).
Combining the four inequalities, by antisymmetry, we get � (1) = 0 and

� (0) = 1.

Proposition 264 If � is a pseudo-complement in a lattice (L;_;^), then � (� _ �) =
� (�) ^ � (�) and � (� ^ �) = � (�) _ � (�)
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Proof. It follows from � � � ^ � and � � � ^ � that
� (� ^ �) � � (�) _ � (�). Take � = � (x) and � = � (y) : Then, the last

inequality gives us
� (� (x) ^ � (y)) � � (� (x)) _ � (� (x)) = x _ y. Apply � on both sides again

to get
�� (� (x) ^ � (y)) � � (x _ y) so that � (x) ^ � (y) � � (x _ y)
In other words, � (�) ^ � (�) � � (� _ �)
By antisymmetry, � (� _ �) = � (�) ^ � (�).
For the second, consider � � � _ � and � � � _ � which gives us � (�)

� � (� _ �) and
� (�) � � (� _ �). Thus
� (� _ �) � � (�) ^ � (�).
� (� ^ �) � � (�) _ � (�). Next, we use � (� _ �) � � (�) ^ � (�) and again

take � = � (x) and
� = � (y) to get � (� (x) _ � (y)) � � (� (x)) ^ � (� (y)) = x ^ y
That is, � (� (x) _ � (y)) � x ^ y
Apply negation on both sides again to get �� (� (x) _ � (y)) � � (x ^ y)
or � (x) _ � (y) � � (x ^ y)
or � (�) _ � (�) � � (� ^ �)
Combining the two, we get the second equality
For a complete lattice, the preceding proposition can be extended as:

�

�W
i2I
�i

�
=
V
i2I
� (�i) and �

�V
i2I
�i

�
=
W
i2I
� (�i) where I is an arbitrary

indexing set.

De�nition 265 Let X be the universe of discourse and let (L;_;^) be a lattice.
A mapping A : X �! L is said to be an L-fuzzy set on X. The set of all L-fuzzy
sets on X will be denoted by FL(X).

FL(X) can be given whatever operations L has, and these operations will
obey any law valid in L which extends point by point. For example, the concepts
of subset, union and intersection can be de�ned by means of �; _ and ^ in L
respectively. More speci�cally, let A,B2 FL(X). If 8x 2 X, A(x) � B(x), then
A is called a subset of B, denoted by A � B. The union A [ B of A and B is
de�ned by 8x 2 X, (A[B)(x) = A(x)_B(x). The intersection A\B of A and
B is de�ned by 8x 2 X, (A \ B)(x) = A(x) ^ B(x). Clearly, A = B i¤ A � B
and B � A. For a complete lattice (L;_;^) and Ai 2 FL (X) (i 2 I), union
and intersection can be extended, 8x 2 X, (�S

i2I
Ai

�
(x) =

W
i2I
Ai(x) and

�T
i2I
Ai

�
(x) =

V
i2I
Ai(x)

If there is a pseudo-complement � on (L;�), then the complement Ac of
A in FL (X) is de�ned by 8x 2 X, Ac(x) = �(A(x)):Generally speaking,
(FL (X) ;[;\) is a lattice. As some additional conditions are imposed on L,
FL (X) will gain some more properties. As examples, we have the following:

Proposition 266 If (L;_;^) is a distributive lattice, then (FL (X) ;[;\) is a
distributive lattice.
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Proof. First we prove that (FL (X) ;[;\) is a lattice. For A;B;C 2 FL (X),
and 8x 2 X, (A [A) (x) = A(x) _ A(x) = A (x). Thus, A [ A = A. Similarly,
(A \A) (x) = A (x) ^A (x) = A (x)
Next, (A [B) (x) = A(x) _B(x) = B(x) _A(x) = (B [A) (x)
Similarly, (A \B) (x) = A(x) ^B(x) = B(x) ^A(x) = (B \A) (x)
Furthermore, (A [ (B [ C)) (x) = A(x)_(B [ C) (x) = A(x)_(B(x) _ C (x))
= (A(x) _B(x)) _ C (x)
= (A [B) (x) _ C (x) = ((A [B) [ C) (x)
Similarly, (A \ (B \ C)) (x) = A(x) ^ (B \ C) (x) = A(x) ^ (B(x) ^ C (x))
= (A(x) ^B(x)) ^ C (x)
= (A \B) (x) ^ C (x) = ((A \B) \ C) (x)
Finally, (A \ (A [B)) (x) = A(x) ^ (A [B) (x) = A(x) ^ (A (x) _B (x)) =

A (x)
And (A [ (A \B)) (x) = A(x)_(A \B) (x) = A(x)_(A (x) ^B (x)) = A (x)
To the prove the second part, since we haveA(x)_(B (x) ^ C (x)) = (A(x) _B (x))^

(A(x) _ C (x))
Therefore, [A [ (B \ C)] (x) = (A [B) (x) \ (A [ C) (x)
Since the second distributive law is the equivalent as the �rst in a lattice,

therefore the proof is complete.

Proposition 267 Let L = P(X) and _;^ and c be the union, intersection
and complement of crisp sets respectively. Then (FL (X) ;[;\; c) is a Boolean
algebra.

2.3 Fuzzy Relations

As known to us, a relation is a subset of the Cartesian product of two sets.
A relation is naturally fuzzi�ed while a subset is fuzzi�ed. In fact, whether
two objects have a relation is not always easy to determine. For example, the
relation �greater than� on the set of real numbers is a crisp one because we
can determine the order relation of any two real numbers without vagueness.
However, the relation �much greater than�is a fuzzy one because it is impossible
for us to �gure out the exact minimum di¤erence of two numbers satisfying this
relation. In real world problems, there exist a lot of such relations, e.g. � being
friend of�and �being con�dent in�between some people. These relations will
be termed as fuzzy relations.

De�nition 268 Let X and Y be two non-empty sets. A mapping R : X�Y �!
[0; 1] is called a fuzzy (binary) relation from X to Y . For (x; y) 2 X � Y ,
R(x; y) 2 [0; 1] is referred to as the degree of relationship between x and y.
Particularly, a fuzzy relation from X to X is called a fuzzy (binary) relation on
X.

By de�nition, a fuzzy relation R is a fuzzy set on X�Y , i.e. R 2 F (X�Y ).
We know that the relation > (greater than) on the set of real numbers is a crisp
relation with the characteristic function de�ned by
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> (x; y) =

�
1 x > y
0 otherwise

whereas the relation >> (much greater than) is a fuzzy relation on the set of
real numbers, which may be expressed by

>> (x; y) =

�
1 + 100

(x�y)2 x > y

0 otherwise

For instance, the ordered pairs (x + 1; x) have a low degree 1=101 with
respect to �>>�, the ordered pairs (x+ 10; x) have an intermediate degree 0:5
with respect to �>>�, and the ordered pairs (x + 100; x) have a high degree
100=101 with respect to �>>�.

De�nition 269 Let R be a fuzzy relation from X to Y . The R-afterset xR
of x (x 2 X) is a fuzzy set on Y de�ned by 8y 2 Y , (xR)(y) = R(x; y):
The R-foreset Ry of y (y 2 Y ) is a fuzzy set on X de�ned by 8x 2 X,
(Ry)(x) = R(x; y):

Since fuzzy relations are fuzzy sets, they have the same set-theoretic opera-
tions as fuzzy sets. LetR and S be fuzzy relations fromX to Y . R is contained in
S, denotedR � S, i¤8(x; y) 2 X�Y , R(x; y) � S(x; y); R is equal to S, denoted
R = S, i¤ 8(x; y) 2 X � Y , R(x; y) = S(x; y). Clearly, R = S i¤ R � S and
S � R. The union R[S 2 F (X �Y ) of R and S is de�ned by 8(x; y) 2 X �Y ,
(R[S)(x; y) = R(x; y)_S(x; y). The intersection R\S 2 F (X�Y ) of R and S
is de�ned by 8(x; y) 2 X�Y , (R\S)(x; y) = R(x; y)^S(x; y): The complement
Rc 2 F (X � Y ) of R is de�ned by
8(x; y) 2 X � Y , (Rc)(x; y) = 1�R(x; y). The inverse R�1 2 F (X � Y ) of

R is de�ned by 8(x; y) 2 X � Y , R�1(y; x) = R(x; y).
In addition, if Ri 2 F (X � Y ) for i 2 I indexing set, then

S
i2I

Ri is de�ned

by 8(x; y) 2 X � Y;

�S
i2I
Ri

�
(x; y) =

W
i2I
Ri(x; y) and

T
i2I

Ri is de�ned by

8(x; y) 2 X � Y;
�T
i2I
Ri

�
(x; y) =

V
i2I
Ri(x; y)

Proposition 270 (R [ S)�1 = R�1 [ S�1;

Proof. (R [ S)�1 (x; y) = (R [ S) (y; x) = R (y; x) _ S (y; x)
= R�1 (x; y) _ S�1 (x; y)
=
�
R�1 [ S�1

�
(x; y)

Proposition 271 (R \ S)�1 = R�1 \ S�1;

Proof. (R \ S)�1 (x; y) = (R \ S) (y; x) = R (y; x) ^ S (y; x)
= R�1 (x; y) ^ S�1 (x; y)
=
�
R�1 \ S�1

�
(x; y)
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Proposition 272 (Rc)�1 = (R�1)c:

Proof. (Rc)�1 (x; y) = Rc (y; x)
= 1�R (y; x)
= 1�R�1 (x; y)
= (R�1)c (x; y)
A fuzzy relation also has the concept of (strong) �-cut. The crisp relation

R� = f(x; y) j R(x; y) � �g for � 2 [0; 1] will be called the �-cut relation of R,
and R̂� = f(x; y) j R(x; y) > �g for � 2 [0; 1] will be called the strong �-cut
relation of R.
Clearly, both an �-cut relation and a strong �-cut relation are crisp relations

from X to Y . Naturally, (strong) �-cut relations have all the properties valid
for (strong) �-cuts of a fuzzy set, e.g. (R [ S)� = R� [ S�;
(Rc)� = (R1��)

c, R(x; y) =
W

�2[0:1]
(� ^R� (x; y))

Let R be a fuzzy relation from X to Y , where X = fx1; x2; :::; xng and
Y = fy1; y2; :::; ymg. In this case, by letting rij = R(xi; yj) for i = 1; 2; :::; n and
j = 1; 2; :::;m, the fuzzy relation R may be represented in the form of a matrix0BBBB@

r11 r12 ::: r1m

r21
. . . r2m

...
. . .

...
rn1 ::: ::: rnm

1CCCCA
Thus, we can simply write we simply write R = (rij)n�m

Example 273 Given the universe of height X = f140; 150; 160; 170; 180g in cm
and the universe of weight Y = f40; 50; 60; 70; 80g in kg, the relation between
the height and weight of a person may be regarded as a fuzzy relation R which
is expressed as:0BBBB@

1 0:8 0:2 0:1 0
0:8 1 0:8 0:2 0:1
0:2 0:8 1 0:8 0:2
0:1 0:2 0:8 1 0:8
0 0:1 0:2 0:8 1

1CCCCA
In this case, 140R = 0:8=40 + 1=50 + 0:8=60 + 0:2=70 + 0:1=80 and R70 =

0:1=140 + 0:2=150 + 0:8=160 + 1=170 + 0:8=180

Proposition 274 Let R = (rij)n�m and S = (sij)n�m. Then
(1) R [ S = (rij _ sij)n�m
(2) R \ S = (rij _ sij)n�m
(3) Rc = (1� rij)n�m
(4) R�1 = RT , where RT stands for the transpose of R.

Proof. (1) (R [ S) (xi; yj) = R (xi; yj) _ S (xi; yj) = (rij _ sij)
=) R [ S = (rij _ sij)n�m
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(2) (R \ S) (xi; yj) = R (xi; yj) ^ S (xi; yj) = (rij ^ sij)
=) R \ S = (rij ^ sij)n�m = (rij ^ sij)n�m
(3) Rc (xi; yj) = 1�R (xi; yj) = 1� rij
=) Rc = (1� rij)n�m
(4) R�1 (xi; yj) = R (yj ; xi) = rji
=) R�1 = (rji)n�m
=) R�1 = RT

De�nition 275 (1) The complement Rc� of R under � is de�ned by 8(x; y) 2
X � Y ,Rc�(x; y) = �(R(x; y)).

De�nition 276 (2) The union R1 [S R2 of R1 and R2 under S is de�ned by
8(x; y) 2 X � Y , R1 [S R2(x; y) = S(R1(x; y); R2(x; y)).

De�nition 277 (3) The intersection R1\T R2 of R1 and R2 under T is de�ned
by 8(x; y) 2 X � Y (R1 \T R2)(x; y) = T (R1(x; y); R2(x; y)):

2.3.1 Composition of Fuzzy Relations

Motivated by the characteristic function expression of the round composition
of crisp relations, the round composition of two fuzzy relations is de�ned as
follows.

De�nition 278 Let R 2 F (X �Y ); S 2 F (Y �Z) and T 2 F (X �Z) be three
fuzzy relations. If 8(x; z) 2 X � Z;

T (x; z) =
_
y2Y

(R(x; y) ^ S(y; z)) = hgt([xR] \ [Sz])

then T is called the (round) composition of R and S, denoted by R � S.

If R is a fuzzy relation on X, we employ R2 to denote R �R and de�ne Rn

(n is any positive integer greater than 1) recursively by Rn = Rn�1 �R. In the
case of �nite universes, the composition can be readily performed by means of
matrices. To illustrate this point, let X = fx1; x2;...; xlg; Y = fy1; y2;...; ymg
and Z = fz1; z2;...; zng and let R = (rij)l�m, S = (sij)m�n and T = (tij)l�n.
By the de�nition of composition, T = R � S means

T (xi; zk) =
_
yj2Y

(R(xi; yj) ^ S(yj ; zk)) = hgt([xR] \ [Sz])

or equivalently tik =
mW
j=1

(rij ^ sjk) for i = 1; 2; :::; l and k = 1; 2; :::; n

Example 279 if R =
�
0:3 0:7 0:2
1 0 0:9

�
and S =

0@ 0:8 0:3
1 0
0:5 0:6

1A then R � S�
(0:3 ^ 0:8) _ (0:7 ^ 0:1) _ (0:2 ^ 0:5) (0:3 ^ 0:3) _ (0:7 ^ 0) _ (0:2 ^ 0:6)
(1 ^ 0:8) _ (0 ^ 0:1) _ (0:9 ^ 0:5) (1 ^ 0:3) _ (0 ^ 0) _ (0:9 ^ 0:6)

�
=
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�
0:3 0:3
0:8 0:6

�
Proposition 280 The composition of fuzzy relations ful�lls the following prop-
erties provided that the involved compositions are possible to perform.
(1) (R � S) � T = R � (S � T );
(2) R � S implies that R � T � S � T and T � R � T � S, especially R � S

implies Rn � Sn for any positive integer n;
(3) (R � S)�1 = S�1 �R�1;
(4) (R [ S) � T = (R � T ) [ (S � T ) and T � (R [ S) = (T �R) [ (T � S);
(5) (R̂�Ŝ)� = R̂��Ŝ� and if the involved universes are �nite, then (R�S)� =

R� � S�
(6) (R \ S) � T � (R � T ) \ (S � T ):

Proof. (1) Let R 2 F (X � Y1), S 2 F (Y1 � Y2); T 2 F (Y2 � Z). Then
8(x; z) 2 X � Z
[(R � S) � T ] (x; z) =

W
y22Y2

[(R � S)(x; y2) ^ T (y2; z)]

=
W

y22Y2

" W
y12Y1

R (x; y1) ^ S(y1; y2)
!
^ T (y2; z)

#
=

W
y22Y2

W
y12Y1

(R (x; y1) ^ S(y1; y2) ^ T (y2; z))

=
W

y12Y1

"
R (x; y1) ^

W
y22Y2

(S(y1; y2) ^ T (y2; z))
#

=
W

y12Y1
[R (x; y1) ^ (S � T ) (y1; z)]

= R � (S � T )(x; z)
(2) Take T 2 F (Y � Z) and R;S 2 F (X � Y ): Since R (x; y) � S (x; y)

8 (x; y) 2 X�Y
(R � T ) (x; z) =

W
y2Y

R (x; y) ^ T (y; z)

�
W
y2Y

S (x; y) ^ T (y; z) = (S � T ) (x; z)

Next, take T 2 F (X � Y ) and R;S 2 F (Y � Z): Since R (y; z) � S (y; z)
8 (y; z) 2 Y � Z
Then, (T �R) (x; z) =

W
y2Y

R (y; z) ^ T (x; y)

�
W
y2Y

S (y; z) ^ T (x; y)

(3) Take R 2 F (X � Y ) and S 2 F (Y � Z). Then, R�1 2 F (Y �X) and
S�1 2 F (Z � Y )
(R � S)�1 = S�1 �R�1;
Then, (R � S)�1 (z; x) = (R � S) (x; z)
=
W
y2Y

R (x; y) ^ S(y; z)

=
W
y2Y

S�1(z; y) ^R�1 (y; x)�
S�1 �R�1

�
(z; x)
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(4) Let R;S 2 F (X � Y ) and T 2 F (Y � Z). For (x; z) 2 X � Z,
[(R [ S) � T ](x; z)
=
W
y2Y

(R [ S) (x; y) ^ T (y; z)

=
W
y2Y

(R (x; y) _ S (x; y)) ^ T (y; z)

=
W
y2Y

[(R (x; y) ^ T (y; z)) _ (S (x; y) ^ T (y; z))]

=

" W
y2Y

(R (x; y) ^ T (y; z))
#
_
" W
y2Y

(S (x; y) ^ T (y; z))
#

= (R � T ) (x; z) _ (S � T ) (x; z)
= [(R � T ) [ (S � T )] (x; z)
(5) Let R 2 F (X � Y ) and S 2 F (Y � Z). Then (x; z) 2 (R̂ � Ŝ)�
() (R � S) (x; z) > �
()

W
y2Y

(R (x; y) ^ S(y; z)) > �

() 9y 2 Y , R (x; y) ^ S(y; z) > �
() 9y 2 Y , R (x; y) > � and S(y; z) > �
() 9y 2 Y , (x; y) 2 R̂� and (y; z) 2 Ŝ�
() (x; z) 2 R̂� � Ŝ�
(6) Take R;S 2 F (X � Y ) and T 2 F (Y � Z)
Then, for any (x; z) 2 X � Z
((R \ S) � T ) (x; z)
=
W
y2Y

[(R \ S)(x; y) ^ T (y; z)]

=
W
y2Y

R(x; y) ^ S(x; y) ^ T (y; z)

=
W
y2Y

(R(x; y) ^ T (y; z)) ^ (S(x; y) ^ T (y; z))

�
" W
y2Y

(R(x; y) ^ T (y; z))
#
^
" W
y2Y

(S(x; y) ^ T (y; z))
#

[(R � T ) \ (S � T )] (x; z)

2.3.2 Fuzzy Equivalence

De�nition 281 If R(x; x) = 1 8x 2 X, then R is called a re�exive (fuzzy)
relation.

If X is �nite and R = (rij)n�n, re�exivity implies that rii = 1(i = 1; 2;...; n)
and vice versa. As a result, we can observe the numbers on the principal diagonal
of R to judge whether R is re�exive or not.

Proposition 282 R is re�exive i¤ 8� 2 [0; 1], R� is re�exive.

Proof. If R is re�exive, then 8� 2 [0; 1], R(x; x) = 1 � �. Hence (x; x) 2 R�,
viz. R� is re�exive.
Conversely, assume that 8� 2 [0; 1], R� is re�exive. Particularly, R1 is

re�exive. Hence 8x 2 X,
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(x; x) 2 R1, or R(x; x) = 1.
It follows from that R is re�exive i¤ R1 (1-cut relation of R) is re�exive.

De�nition 283 If 8x; y 2 X, R(x; y) = R(y; x), then R is called a symmetric
(fuzzy) relation.

Obviously, R is symmetric i¤ R = R�1. We know that R�1 = RT in the
case of �nite universes. Hence R is a symmetric relation i¤ R as a matrix is
symmetric in this case.

Proposition 284 R is symmetric i¤ 8� 2 [0; 1], R� is a symmetric relation.

Proof. If R is symmetric and (x; y) 2 R�, then R(y; x) = R(x; y) � �. Hence
(y; x) 2 R�, which proves the symmetry of R�. Conversely, assume that 8� 2
[0; 1], R� is symmetric. For any x; y 2 X, take � = R(x; y). Then (x; y) 2 R�
and hence (y; x) 2 R� due to the symmetry of R�. Therefore R(y; x) � � =
R(x; y).
Next, (x; y) 2 R� and hence (y; x) 2 R� implies R (x; y) � � and R (y; x) �

�. We can take R (y; x) = � so that R(x; y) � R(y; x). Combining the two
inequalities yields R(x; y) = R(y; x):

De�nition 285 If R � R2, then R is said to be a transitive (fuzzy) rela-
tion.

Proposition 286 R is transitive i¤ 8x; y; z 2 X, R(x; z) � R(x; y) ^R(y; z).

Proof. R is transitive
() R � R2

() 8x; z 2 X, R(x; z) � R2(x; y)
() 8x; y; z 2 X, R(x; z) � R(x; y) ^R(y; z)
If X = fx1; x2; :::; xng is �nite and R = (rij)n�n, then R is transitive i¤

R(xi; xk) � R(xi; xj) ^R(xj ; xk), i.e. rik � rij ^ rjk for i; j; k = 1; 2;...; n:

Proposition 287 R is transitive i¤ 8� 2 [0; 1], R� is transitive.

Proof. ( =) ) Let (x; y); (y; z) 2 R� for any �xed � 2 [0; 1]. It follows that
R (x; y) � � and R (y; z) � �: Then, R (x; y) ^ R (y; z) = � � R (x; z) =)
(x; z) 2 R�
((= ) We prove 8x; y; z 2 X, R(x; z) � R(x; y) ^ R(y; z). By letting

R (y; x)^R (y; z) = �; we have R (x; y) � � and R (y; z) � � so that (x; y) 2 R�
and (y; z) 2 R�. Hence R(x; z) � R (y; x) ^ R (y; z) = � since R� is transitive.

De�nition 288 If R is re�exive, symmetric and transitive, then R is called a
fuzzy equivalence relation.

Proposition 289 R is a fuzzy equivalence relation i¤ 8� 2 [0; 1], R� is an
equivalence relation.
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Proof. Direct consequence of previous three propositions
We know that a crisp equivalence relation determines a partition of X. So

every R� determines a partition of X if R is a fuzzy equivalence relation. For
example, let R be a fuzzy relation on X = fx1; x2; x3; x4; x5g, de�ned by

R =

0BBBB@
1 0:4 0:8 0:5 0:5
0:4 1 0:4 0:4 0:4
0:8 0:4 1 0:5 0:5
0:5 0:4 0:5 1 0:6
0:5 0:4 0:5 0:6 1

1CCCCA
Apparently, R is a re�exive because the diagonal elements are 1. R is also

symmetric fuzzy relation because RT = R. In addition, it is easily checked that
R2 = R, making R transitive. Thus R is a fuzzy equivalence relation.
For 0:8 < � � 1, R� = f(x1; x1); (x2; x2); (x3; x3); (x4; x4); (x5; x5)g, the

partition of X determined by R� is fx1g; fx2g; fx3g; fx4g; fx5g:
Similarly, for 0:6 < � � 0:8, R� = f(x1; x3); (x3; x1)g the partition of X

determined by R� is fx1; x3g; fx2g; fx4g; fx5g:
For 0:5 < � � 0:6, R� = f(x4; x5); (x5; x4)g the partition of X determined

by R� is fx1; x3g; fx2g; fx4; x5g:
For 0:4 < � � 0:5, R� = f(x1; x4); (x4; x1); (x3; x4); (x3; x5); (x5; x3); (x4; x3)g

the partition of X determined by R� is
fx1; x3; x4; x5g; fx2g:
If � � 0:4, the elements in X cannot be partitioned by R�. Clearly, the

partition determined by R� becomes increasingly re�ned as the � increases.

De�nition 290 Let R be a fuzzy equivalence relation on X. A fuzzy set [a]R
for a 2 X de�ned by:

8x;2 X, [a]R(x) = R(a; x) is called the fuzzy equivalence class of a by R.
The set X=R = f[a]R j a 2 Xg of all fuzzy equivalence classes is called the fuzzy
quotient set of X by R.

Example 291 Let X = fa; b; cg and R be a fuzzy equivalence relation on X

de�ned by R =

0@ 1 1 0:7
1 1 0:7
0:7 0:7 1

1A. Then [a]R = 1=a + 1=b + 0:7=c; [b]R =

1=a + 1=b + 0:7=c and [c]R = 0:7=a + 0:7=b + 1=c: The fuzzy quotient set of X
by R is X=R = f[a]R; [c]Rg:

We know that [a]R = [b]R i¤ aRb in the crisp case. The following is a fuzzy
counterpart of this result.

Proposition 292 If R is a fuzzy equivalence relation, then [a]R = [b]R i¤
R(a; b) = 1:

Proof. ( =) ) R(a; b) = [a]R(b) = [b]R(b) = R(b; b) = 1:
((= ) If R(a; b) = 1, then 8x 2 X, [a]R(x) = R(a; x) � R(a; b) ^ R(b; x) =

R(b; x) = [b]R(x)
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since R is transitive. Similarly, [b]R(x) = R(b; x) � R(b; a) ^ R(a; x) =
R(a; x) = [a]R(x) we have [b]R(x) � [a]R(x). Consequently, [a]R = [b]R.
Unlike the crisp case, the intersection of two distinct fuzzy equivalence classes

may be not empty. For instance, [a]R \ [c]R = 0:7=a + 0:7=b + 0:7=c, which is
a non-empty set in the above example. We have the following weaker result
instead.

Proposition 293 If [a]R = [b]R, then hgt([a]R \ [b]R) < 1:

Proof. If [a]R 6= [b]R and hgt([a]R \ [b]R) = 1, then due to the transitivity of
R, we have

R(a; b)
�
W
x2X

(R(a; x) ^R(x; b))

=
W
x2X

([a]R(x) ^ [b]R(x))

hgt([a]R \ [b]R) = 1 which contradicts [a]R = [b]R i¤ R(a; b) = 1:

3 Fuzzy Analysis and Algebra

As known to us, the theory of classical sets is the foundation on which modern
mathematics rests. When sets are fuzzi�ed, some traditional pure mathematical
branches are accordingly generalized. In this chapter, we introduce three well-
developed fuzzi�ed mathematical areas brie�y to have a glance at how a pure
mathematical theory can be fuzzi�ed. The three areas are (i) fuzzy measures and
fuzzy integrals (ii) fuzzy algebraic structures including fuzzy groups, fuzzy rings
and fuzzy �elds (iii) fuzzy topology. This chapter will be mainly for authors with
the elementary knowledge of the corresponding classical mathematical branches
and it will supply them with basic materials for further reading or research.

3.1 Fuzzy Measures

In mathematical analysis and in probability theory, a �-algebra (also sigma-
algebra, �-�eld, sigma-�eld) on a set X is a collection of subsets of X that is
closed under countably many set operations (complement, union and intersec-
tion). On the other hand, an algebra is only required to be closed under �nitely
many set operations. That is, a �-algebra is an algebra of sets, completed to
include countably in�nite operations.
More rigorously,

De�nition 294 Let X be some set. Then a subset � � P (X) is called a �-
algebra if it satis�es the following three properties:
� is non-empty: There is at least one A � X in �.
� is closed under complementation: If A is in �, then so is its complement,

XnA.
� is closed under countable unions: If A1; A2; A3; ::: are in �, then so is

A =
S
i

Ai
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The main use of �-algebras is in the de�nition of measures; speci�cally, the
collection of those subsets for which a given measure is de�ned is necessarily a
�-algebra. This concept is important in mathematical analysis as the foundation
for Lebesgue integration
IfX = fa; b; c; dg; one possible �-algebra onX is � = f?; fa; bg; fc; dg; fa; b; c; dgg,

where ? is the empty set. However, a �nite algebra is always a �-algebra. If
fA1; A2; A3; : : :g is a countable partition of X then the collection of all unions
of sets in the partition (including the empty set) is a �-algebra.

Proposition 295 Let (X;�) be a �-algebra. Then, the countable intersection
of elements of � is in �

Proof.
S
i

Ai 2 � and Aci 2 � 8i =)
�S
i

Ai

�c
=
T
i

Ai 2 �

De�nition 296 Let A � P(X) be a �-algebra and A;B 2 A,. If a mapping
g : A �! [0; 1] satis�es
(1) boundedness: g(?) = 0 and g(X) = 1
(2) monotonicity: A � B implies g(A) � g(B)
(3) continuity: An "(or #) A (read An �! A monotonically) implies that

lim
n!1

g(An) = g(A);

then g is called a fuzzy measure.

(X;A) and (X;A; g) are called a fuzzy measurable space and a fuzzy measure
space respectively.
Sugeno made the following interpretation: g(A) measures the certainty de-

gree to which a generic element x is in A. If A is empty, x is certainly not in
A. If A is the whole set, x is certainly in it. When A � B, the certainty degree
to which x is in A is of course less than the certainty degree to which x is in B.

Example 297 For any A 2 P(X) and A;B 2 A, the Dirac measure centered
in x0 2 X assumes the form

g(A) = A(x0) =
1 x0 2 A
0 x0 62 A

where x0 is a �xed element in X. To show that this is indeed a fuzzy measure,
g(?) = ?(x0) = 0 since x0 62 ?. Next, g(X) = X(x0) = 1 since x 2 X by
default. For (2), let A � B. If A is empty, then (2) trivially holds. Assume A
is non-empty. Then, g(A) = A(x0) = 1 if x0 2 A =) x0 2 B =) g(B) = 1.
Furthermore, if g(A) = A(x0) = 0. Then, x0 62 A. Since 0 � g (U) 2 P(X) and
in particular for g(B). Thus, in all cases, g(A) � g(B).
Finally, let An "(or #) A. If An (x0) = 0 8n, then A (x0) = 0. If An (x0) = 1

8n, then A (x0) = 1 for some �nite starting n, then A (x0) = 1 or A (x0) = 0
(this case is confusing). In all cases, lim

n!1
g(An) = g(A);
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Proposition 298 If g is a fuzzy measure on the measurable space (X;A) and
A;B 2 A, then
(1) g(A [B) � g(A) _ g(B);
(2) g(A \B) � g(A) ^ g(B):

Proof. Clearly, we have A [ B � A and A [ B � B. Since g is monotonic,
therefore 1 holds
Next, A \B � A and A \B � B so that 2 holds

More generally, g
�S
i

Ai

�
�
W
i

g (Ai) and g
�T
i

Ai

�
�
V
i

g (Ai)

De�nition 299 If a mapping g� : A �! [0; 1] depending on a parameter �
(� > �1) satis�es that
(1) g�(X) = 1;
(2) g�(A [B) = g�(A) + g�(B) + �g�(A)g�(B) whenever A \B = ?,
(3) An "(or #) A implies that lim

n!1
g� (An) = g�(A),

then g� is called a �-fuzzy measure or a g� measure.

Proposition 300 Each g� measure is a fuzzy measure.

Proof. Since X \? = ? and X [? = X, then we can apply (2) of g� measure
g�(X [?) = g�(X) = g�(X) + g�(?) + �g�(X)g�(?)
or g�(?) + �g�(?) = 0
or g�(?) (1 + �) = 0
Since � > �1, we have �+ 1 > 0 ir �+ 1 6= 0 so that g�(?) = 0. From (1)

of g� measure and g�(?) = 0; this satis�es (1) of fuzzy measure,
Assume that A � B. Then A [ (B � A) = A [ B = B, together with

A \ (B �A) = ? leads to
g�(B) = g�(A [B) = g�(A) + g�(B) + �g�(A)g�(B)
or g�(A) + �g�(A)g�(B) = 0
or g�(A) (1 + �g�(B)) � g�(A)
(3) already holds

Proposition 301 Each g� measure satis�es the following properties.
(1) g� (Ac) =

1�g�(Ac)
1+�g�(A)

(2) If A � B, then g�(A�B) = g�(A)�g�(B)
1+�g�(B)

(3) If Ai \Aj = ? for i 6= j, then g�

�S
n
An

�
= 1

�

�Q
n
1 + �g� (An)

�
� 1

�

Proof. (1) From A \ Ac = ?, we have 1 = g (X) = g�(A [ Ac) = g�(A) +
g�(A

c) + �g�(A)g�(A
c) or

1 = g�(A) (1 + �g�(A
c)) + g�(A

c)
or 1� g�(Ac) = g�(A) (1 + �g�(A

c))

or g� (Ac) =
1�g�(Ac)
1+�g�(A)

(2) Suppose A � B, Then, A = B[(A�B) and B\(A�B) = ?. Therefore,
we use (2) to get
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g� (A) = g�(B [ (A�B)) = g�(B) + g�(A�B) + �g�(B)g�(A�B)
or g� (A)� g�(B) = g�(A�B) (1 + �g�(B))
or g�(A)�g�(B)1+�g�(B)

= g�(A�B)
(3) Assume From A1 \ A2 = ?. Then, g�(A1 [ A2) = g�(A1) + g�(B2) +

�g�(A1)g�(B2)
or g�(A1 [A2) = g�(A1) + g�(A2) (1 + �g�(A1))
or g�(A1 [A2) = 1

� + g�(A1) + �g�(A2)
�
1
� + g�(A1)

�
� 1

�

or g�(A1 [A2) =
�
1
� + g�(A1)

�
(1 + �g�(A2))� 1

�
or g�(A1 [A2) = 1

� (1 + �g�(A1)) (1 + �g�(A2))�
1
�

Thus, (3) is valid for n = 2

Let g�

�
nS
i

Ai

�
= 1

�

�
nQ
i

1 + �g� (Ai)

�
� 1

� be true if Ai \Aj = ? for i 6= j

Then, g�

�
n+1S
i

Ai

�
= g�

�
nS
i

Ai

�
+ g�(An+1) + �g�

�
nS
i

Ai

�
g�(An+1)

or g�

�
n+1S
i

Ai

�
= 1

�

�
nQ
i

1 + �g� (Ai)

�
� 1
�+g�(An+1)+�

�
1
�

�
nQ
i

1 + �g� (Ai)

�
� 1

�

�
g�(An+1)

or g�

�
n+1S
i

Ai

�
= 1

�

�
nQ
i

1 + �g� (Ai)

�
� 1

� +

�
nQ
i

(1 + �g� (Ai))

�
g�(An+1)

or g�

�
n+1S
i

Ai

�
=

�
nQ
i

1 + �g� (Ai)

��
1
� + g�(An+1)

�
� 1

�

or g�

�
n+1S
i

Ai

�
= 1

�

�
nQ
i

1 + �g� (Ai)

�
(1 + �g�(An+1))� 1

�

or g�

�
n+1S
i

Ai

�
= 1

�

�
n+1Q
i

1 + �g� (Ai)

�
� 1

�

Hence g�

�
kS
i

Ai

�
= 1

�

�
kQ
i

1 + �g� (Ai)

�
� 1

� is valid for all k.

Then, lim
k!1

g�

�
kS
i

Ai

�
= lim
k!1

1
�

�
kQ
i

1 + �g� (Ai)

�
� 1

�

or g�

�S
n
An

�
= 1

�

�Q
n
1 + �g� (An)

�
� 1

� because g� is continuous

Proposition 302 For A;B 2 A, g�(A [B) = g�(A)+g�(B)��g�(A)g�(B)
1+�g�(A\B)

Proof. On the one hand, g�(A [B) = g� ((A [B) \X)
= g� ((A [B) \ (A [Ac))
= g� (A [ (B \Ac))
= g� (A [ (B �A))
Since A \ (B �A) = ?, we use (2) to get
g�(A [B) = g�(A [ (B �A)) = g�(A) + g� (B �A)) + �g�(A)g� (B �A)
On the other hand, g�(B) = g� (B \X)
= g� (B \ (A [Ac))
= g� ((B \A) [ (B \Ac))
Since (B \A) \ (B \Ac) = B \A \Ac = ?, we can again use (2) to get
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g�(B) = g� ((B \A) [ (B �A)) = g�(B\A)+g�(B�A)+�g�(B\A)g�(B�
A)
or g�(B)� g�(B \A) = g�(B �A) + �g�(B \A)g�(B �A)
or g�(B)� g�(B \A) = g�(B �A) (1 + �g�(B \A))
or g�(B)�g�(B\A)1+�g�(B\A) = g�(B �A)
Putting this in the previous equality, we get
g�(A [B) = g�(A) +

g�(B)�g�(B\A)
1+�g�(B\A) + �g�(A)

g�(B)�g�(B\A)
1+�g�(B\A)

(1+�g�(A\B))g�(A)+�g�(A)g�(B\A)+g�(B)�g�(B\A)+�g�(A)g�(B)��g�(A)g�(B\A)
1+�g�(A\B)

g�(A [B) = g�(A)+g�(B)�g�(B\A)+�g�(A)g�(B)
1+�g�(A\B)

Example 303 Let X = fx1; x2; :::; xng and A = P(X). If gi 2 [0; 1] for

i = 1; 2; :::; n satis�es
nQ
i

(1 + �gi) = 1 + � then g� de�ned by 8A 2 A, g� (A) =

1
�

nQ
xi2A

(1 + �gi)� 1
� is a ��fuzzy measure. Conversely, if g� is a ��fuzzy mea-

sure, then the equalities hold for g�(fxig) for i = 1; 2; :::; n

Proof. Assume that the equalities are satis�ed. Then g� (X) = 1
�

nQ
xi2X

(1 + �gi)�
1
�

= 1
�

nQ
i

(1 + �gi)� 1
� =

1
� (1 + �)�

1
� = 1

Suppose that A \ B = ?. Write a =
nQ

xi2A
(1 + �gi) and b =

nQ
xi2B

(1 + �gi).

Then,

g�(A [B) = 1
�

nQ
xi2A[B

(1 + �gi)� 1
�

= 1
�

 
nQ

xi2A
(1 + �gi)

! 
nQ

xi2B
(1 + �gi)

!
� 1

�

= 1
� (ab� 1)

= 1
�ab�

1
� +

1
�a�

1
� +

1
� �

1
�a+

1
�b�

1
�b

= 1
� (a� 1) +

1
� (b� 1) +

1
�ab�

1
�a�

1
�b+

1
�b

= 1
� (a� 1) +

1
� (b� 1) +

1
�ab�

1
�a�

1
�b+

1
�b

= 1
� (a� 1) +

1
� (b� 1) + �

1
� (a� 1)

1
� (b� 1)

= g�(A) + g�(B) + �g�(A)g�(B)
Since X is a �nite set, the continuity requirement is automatically satis�ed.

Thus g� is a �-fuzzy measure.
Conversely, assume that g� is a �-fuzzy measure.
g�(fx1; x2g) = g�(fx1g) + g�(fx2g) + �g�(fx1g)g�(fx2g)
= g1 + g2 + �g1g2 =

1
� (1 + �g1) [(1 + �g2)� 1]

Hence the equality holds for A = fx1; x2g for n = 2. Assume the equality
holds for some k.

g�

 
k[
i=1

xi

!
= g� (fxkg) + g�

 
k�1[
i=1

xi

!
+ �g�(fxkg)g�

 
k�1[
i=1

xi

!
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Applying mathematical induction, we can prove that the equality is valid for

all n. Observe that g�(X) = 1. By the same equality, 1�

�
nQ
i

(1 + �gi)� 1
�
= 1,

we get the second.

3.2 Fuzzy Algebra

In this section, we merely introduce the fuzzi�cation of some main notions in
abstract algebra including groups, normal groups, rings and ideals

3.2.1 Fuzzy Group

De�nition 304 A fuzzy subset A on G is called a fuzzy subgroup of G if it
satis�es the following conditions:
(1) A(xy) � A(x) ^A(y) for any x; y 2 G and
(2) A(x�1) � A(x) for any x 2 G.

As we know, a subset A of group G is a subgroup of G i¤G satis�es that (1)
x; y 2 A implies xy 2 A and (2) x 2 A implies x�1 2 A. The two inequalities
in the above de�nition are just the fuzzi�cation of these conditions.

Proposition 305 Let A be a fuzzy subgroup of G. For any x 2 G,
(1) A(x) � A(e);
(2) A(x�1) = A(x);
(3) A(xn) � A(x), where n is an arbitrary integer.

Proof. (1) A (e) = A(xx�1) � A(x) ^A(x�1) � A(x) ^A(x) = A (x)

(2) A (x) = A
��
x�1

��1� � A
�
x�1

�
(3) Holds for n = 2. Assume it holds for k. Then, A(xk+1) � A(x)^A

�
xk
�
�

A(x) ^A (x) = A (x)

Proposition 306 Let A 2 F (G). Then A is a fuzzy subgroup of G i¤ A(xy�1) �
A(x) ^A(y) holds for any x; y 2 G:

Proof. If A is a fuzzy subgroup of G, then A(xy�1) � A(x) ^ A(y�1) =
A(x) ^A(y):
Conversely, suppose A(xy�1) � A(x) ^ A(y) holds for any x; y 2 G. Then

for any x 2 G,
A(e) = A(xx�1) � A(x) ^A(x) = A(x)
i.e. A(x) � A(e). Thus, for any x 2 G, A(x�1) = A(ex�1) � A(e) ^A(x) =

A(x):

Meanwhile, for any x; y 2 G, A(xy) = A
�
x
�
y�1

��1� � A(x) ^ A(y�1) �
A(x) ^A(y). Therefore A is a fuzzy subgroup of G.

Proposition 307 A is a fuzzy subgroup of G i¤ A� is a subgroup of G for
every � 2 R(G).
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Proof. Suppose that A is a fuzzy subgroup of G and � 2 R(G). Then 9x such
that A (x) = � so that A� 6= ?. Let x; y 2 A�, i.e. A(x) � � and A(y) � �.
Hence,

A(xy�1) � A(x) ^A(y�1) = A(x) ^A(y) � �, and thus xy�1 2 A�.
Conversely, suppose A� is a subgroup of G for every � 2 A(G). For any

x; y 2 G, let � = A(x) ^ A(y) 2 A(G). Then A(x) � � and A(y) � �,
i.e. x 2 A� and y 2 A�. Hence, xy�1 2 A� since A� is a subgroup of G.
Consequently, A(xy�1) � � = A(x) ^A(y).
Particularly, AA(e) = fx j A(x) = A(e)g is a subgroup of G if A is a fuzzy

subgroup of G. We shall denote this subgroup by A�

The binary multiplicative operation in G can be extended to F (G) using the
Zadeh�s extension principle. Let A;B 2 F (G). Then A � B is de�ned by: for
any z 2 G, (A � B)(z) =

_
z=xy

(A(x) ^ B(y)). In addition, for every A 2 F (G),

we shall de�ne A�1 2 F (G) by: for any x 2 G, A�1 (x) = A
�
x�1

�
. With these

notions, we present an equivalent
statement of a fuzzy subgroup

Proposition 308 Let A 2 F (G).Then A is a fuzzy subgroup of G i¤ A�A�1 =
A.

Proof. If A is a fuzzy subgroup of G, then for any z 2 G, (A � A�1)(z) =_
z=xy

(A(x) ^A�1(y))

=
_
z=xy

(A(x) ^A(y�1))

=
_
z=xy

(A(x) ^A(y))

�
_
z=xy

A(xy) = A (z). Hence A � A�1 � A. Meanwhile, for any z 2 G,

(A � A�1)(z) =
_
z=xy

(A(x) ^ A�1(y)) � A (z) ^ A (e). Thus A � A�1 � A.

Consequently, A �A�1 = A.
Conversely, suppose A � A�1 = A.Then, for any x; y 2 G, A(xy�1) =�

A �A�1
� �
xy�1

�
� A(x) ^A�1(y�1) = A(x) ^A(y):

Proposition 309 Let A be a fuzzy subgroup of G and let f be an epimorphism
of G onto a group G0. Then f(A) is a fuzzy subgroup of G.

Proof. Assume that A is a fuzzy subgroup of G and let f (x) = u and f (y) =
v 2 G0. We can thus have f

�
y�1

�
= v�1. Since A

�
xy�1

�
� A (x) ^ A (y), we

have f (A)
�
v�1

�
^ f (A) (u) =

_
f(x)=u

A (x) ^
_

f(y�1)=v�1

A
�
y�1

�
=

_
f(x)=u;f(y�1)=v�1

�
A (x) ^A

�
y�1

��
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�
_

f(x)=u;f(y�1)=v�1

A
�
xy�1

�
Since f

�
y�1

�
= v�1 and f (x) = u, we have f

�
xy�1

�
= uv�1

Thus, _
f(x)=u;f(y�1)=v�1

A
�
xy�1

�
=

_
f(xy�1)=uv�1

A
�
xy�1

�
= f (A)

�
uv�1

�
That is, f (A)

�
v�1

�
^ f (A) (u) � f (A)

�
uv�1

�
Proposition 310 Let f be a homomorphism from G to a group G0 and let B
be a fuzzy subgroup of G0. Then f�1(B) is a fuzzy subgroup of G.

Proof. For any x; y 2 G, f�1(B)(xy�1)
= B(f(xy�1)) = B(f(x)f(y�1))
� B(f(x)) ^B(f(y�1))
= B(f(x)) ^B(f(y)�1)
� B(f(x)) ^B(f(y))
= f�1(B)(x) ^ f�1(B)(y).
Let G1; G2;...; Gn be n groups. We know from abstract algebra that G1 �

G2 � ::: � Gn is still a group under the multiplication de�ned 8xi; yi 2 Gi for
i = 1; 2; :::; n, (x1; x2;...; xn) � (y1; y2;...; yn) = (x1 � y1; x2 � y2;...; xn � yn). In
this group, (x1; x2;...; xn)�1 = (x

�1
1 ; x�12 ;...; x�1n ). In a similar vain, we have the

following:

Proposition 311 Let A1; A2; :::; An be fuzzy subgroups of G1; G2; :::; Gn respec-
tively. Then the Cartesian product A1 � A2 � ::: � An is a fuzzy subgroup of
G1 �G2 � :::�Gn .

Proof. Form a tuple for xi; yi 2 Gi. Since we haveAi
�
xiy

�1
i

�
� Ai (xi)^Ay (yi)

then, (A1 �A2 � :::�An)
�
x1y

�1
1 ; x2y

�1
2 ; :::; xny

�1
n

�
=

n̂

i=1

Ai
�
xiy

�1
i

�
�

n̂

i=1

Ai (xi) ^Ai (yi)

(A1 �A2 � :::�An) (x1y1; x2y2; :::; xnyn)

De�nition 312 A fuzzy subgroup A of G is called normal if A(xy) = A(yx)
holds for any x; y 2 G

Proposition 313 A fuzzy subgroup A of G is normal i¤ A(xyx�1) = A(y)
holds for any x; y 2 G.
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Proof. Suppose A is normal. By de�nition, for any x; y 2 G, A(xyx�1) =
A(xx�1y) = A(y).
Conversely, suppose A(xyx�1) = A(y) holds for any x; y 2 G.Then A(xy) =

A(xyxx�1) = A(yx), i.e. A is normal.

Proposition 314 A 2 F (G) is a normal fuzzy subgroup of G i¤ A � A�1 = A
and A �B = B �A holds for all B 2 F (G)

Proof. For any fuzzy subgroup, A �A�1 = A. Take (A �B) (z)
=
_
z=xy

A (x) ^B (y)

=
_
y2G

A
�
zy�1

�
^B (y)

=
_
y2G

A
�
y�1z

�
^B (y)

=
_
y2G

A
�
y�1z

�
^B (y)

=
_
z=yx

A (x) ^B (y)

=
_
z=yx

B (y) ^A (x)

= (B �A) (z)
Conversely, A � A�1 = A implies A is a fuzzy subgroup. To show that A is

normal, take B =
�
x�1

	
Then, A (xy) =

��
x�1

	
�A
�
(y) =

�
A �

�
x�1

	�
(y) =

_
y=st

A (s)^
�
x�1

	
(t) =

A (yx)

Proposition 315 A 2 F (G) is a normal fuzzy subgroup of G i¤ A� is a normal
subgroup of G for any � 2 R(A)

Proof. A is a subgroup i¤A� is one. For normality, take x 2 G and y 2 A�. It
follows from A(xyx�1) = A(y) � �. Hence xyx�1 2 A�, and thus A� is normal.
Conversely, take x; y 2 G and � = A(y). Then � 2 fA(x) j x 2 Gg and y 2 A�.
Hence xyx�1 2 A�.Consequently, A(xy�1x) � � = A(y). As a result, A is a
normal fuzzy subgroup of G.
Particularly, A� is a normal subgroup of G if A is a normal fuzzy subgroup

of G.

De�nition 316 Let A be a fuzzy subgroup of G. For every x 2 G, de�ne
xA;Ax 2 F (G) by: 8y 2 G, (xA)(y) = A(x�1y) and (Ax)(y) = A(yx�1):

Then xA and Ax are called the left coset and right coset of A w.r.t. x
respectively. Clearly, xA = Ax holds for any x 2 G if A is a normal fuzzy
subgroup of G. In this case, we simply call xA(= Ax) a coset. Write G=A =
fxA j x 2 Gg:
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Lemma 317 Let A be two normal fuzzy subgroups of G. Then xA�yA = (xy)A
holds for any two cosets xA; yA 2 G=A

Proof. On the one hand, for any z 2 G, (xA � yA) (z) =
W

z=z1z2

((xA)(z1) ^ (yA)(z2))

� (xA)(x) ^ (yA)(x�1z) = A(x�1x) ^ A(y�1x�1z) = A(e) ^ A(y�1x�1z) =
A((xy)�1z) = ((xy)A)(z).
On the other hand, considering that A is normal,
(xA � yA)(z) =

W
z=z1z2

((xA)(z1) ^ (yA)(z2))

=
W

z=z1z2

(A(x�1z1) ^A(y�1z2))

=
W

z=z1z2

(A(x�1z1) ^A(z2y�1))

�
W

z=z1z2

A(x�1z1z2y
�1)

= A(x�1zy�1) = A(y�1x�1z)
= A((xy)�1z) = ((xy)A)(z):
We have the following result concerning (G=A; �).

Proposition 318 Let A be a normal fuzzy subgroup of G. Then
(1) (G=A; �) is a group and
(2) G=A is isomorphic to G=A*.

Proof. (1) Clearly, the operation � is associative, A is the identity of G=A and
the inverse of xA is x�1A: Hence (G=A; �) is a group.
(2) For any x 2 G, let f : xA �! xA*. Then, for any x; y 2 G,
f(xA � yA) = f(xyA) = xyA*= xA*yA*= f(xA)f(yA).
Hence f is a homomorphism. In order to prove that f is injective, suppose

that xA = yA. Then A(x�1z) = A(y�1z) for all z 2 G. Particularly, A(x�1y) =
A(e) when z = y. Thus x�1y 2 A*. As a result, xA*= yA*. Hence f is injective.
It is clear that f is surjective. In summary, f is an isomorphism between G=A
and G=A*.

G=A will be called the quotient group of G by a normal fuzzy subgroup A
of G.

Proposition 319 Let A be a normal fuzzy subgroup of G. De�ne �A : G=A �!
[0; 1] by: 8xA2G/A, �A(xA) = A(x).

Then �A is a normal fuzzy subgroup of G/A.
Proof. Firstly, for any xA 2 G=A, �A((xA)�1) = �A(x�1A) = A(x�1) = A(x) =
�A(xA) and for any xA; yA 2 G=A, �A(xA yA) = �A(xyA) = A(xy) � A(x) ^
A(y) = �A(xA)^ �A(yA). Hence �A is a fuzzy subgroup of G=A. Next, for any xA,
yA 2 G=A, �A(xA � yA) = �A(xyA) = A(xy) = A(yx) = �A(yxA) = �A(yA � xA):
Hence �A is a normal fuzzy subgroup of G=A.

Proposition 320 Let A be a normal fuzzy subgroup of G and let f be an epi-
morphism of G onto a group G. Then f(A) is a normal fuzzy subgroup of G.
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Proof. By Proposition 5.8, f(A) is a fuzzy subgroup of G. Let u; v 2 G. Then
there exists x 2 G such that f(x) = u since f is surjective. Hence, we obtain
successively f(A)(uvu�1) =

W
f(z)=uvu=1

A(z)

=
W

f(z)=f(x)v(f(x))=1
A(z)

=
W

f(x�1zx)=v

A(z) (f is a homomorphism)

=
W

f(y)=v

A(xyx�1) =
W

f(y)=v

A(y) (A is normal)

= f(A)(v):
Hence f(A) is a normal fuzzy subgroup of G.

Proposition 321 Let f be a homomorphism from G to a group G and let B be
a normal fuzzy subgroup of G. Then f�1(B) is a normal fuzzy subgroup of G.

Proof. By Proposition 5.9, f�1(B) is a fuzzy subgroup of G. Now, let x; y 2 G.
Then f�1(B)(xy) = B(f(xy)) = B(f(x)f(y)) = B(f(y)f(x)) = B(f(yx)) =
f�1(B)(yx):
Hence f�1(B) is a normal fuzzy subgroup of G.

Proposition 322 Let A1; A2; :::; An be normal fuzzy subgroups of G1; G2; :::; Gn
respectively. Then the Cartesian product

nQ
i=1

Ai is a normal fuzzy subgroup of

G1 �G2 � :::�Gn.

Proof. By Proposition 5.10,
nQ
i=1

Ai is a fuzzy subgroup of G1 �G2 � :::�Gn
Furthermore, 8(x1; x2; ::: ; xn); (y1; y2; :::; yn) 2 G1 �G2 � :::�Gn�

nQ
i=1

Ai

�
(x1; x2; ::: ; xn); (y1; y2; :::; yn)

=

�
nQ
i=1

Ai

�
(x1y1; x2y2; ::: ; xnyn)

=
nV
i=1

Ai (xiyi)

=
nV
i=1

Ai (yixi)

=

�
nQ
i=1

Ai

�
(y1x1; y2x2; ::: ; ynxn)

3.2.2 Fuzzy Subrings

In this and next subsection, we assume (R;+; �) is a ring. For convenience, we
write xy instead of x � y for x; y 2 R.

De�nition 323 A 2 F (R) is called a fuzzy subring of R if A satis�es that
(1)8x; y 2 R;A(x� y) � A(x) ^A(y) and
(2) 8x; y 2 R;A(xy) � A(x) ^A(y).
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From the de�nition, it follows that A is a fuzzy subgroup of R under addition
+ if A is a fuzzy subring of R. Furthermore, this fuzzy subgroup is normal since
the addition is commutative. As a result, 8x 2 R;A(x) � A(0) for every fuzzy
subring A, where 0 denotes the zero element of R.

Proposition 324 A 2 F (R) is a fuzzy subring of R i¤ A� is a subring of R
for every � 2 R(A):

Proof. The proof is similar to that of Proposition 5.6.
By Proposition 5.19, A*= fx j A(x) = A(0)g is a subring of R. The opera-

tions on R can be extended to F (R) as follows: 8A;B 2 F (R);8z 2 R;
(A+B)(z) =

W
x+y=z

(A(x) ^B(y));

(A�B)(z) =
W

x�y=z
(A(x) ^B(y));

(A �B)(z) =
W

xy=z
(A(x) ^B(y))

Remark 325 A 2 F (R) is a fuzzy subring of R i¤ A�A � A and A �A � A.

Proof. Let A be a fuzzy subring of R. Since A is a fuzzy group under addition,
A � A � A by Proposition 5.7. Moreover, 8z 2 R; (A � A)(z) =

W
xy=z

(A(x) ^

A(y)) � A(xy) = A(z), i.e. A �A � A.
Conversely, suppose that A � A � A and A � A � A. Then, 8x; y 2 R;

A(x� y) � (A�A)(x� y)
=

W
s�t=x�y

(A(s) ^A(t)) � A(x) ^A(y):

Similarly, A(xy) � (A �A)(xy) =
W

xy=st
(A(s) ^A(t)) � A(x) ^A(y): Conse-

quently, A is a fuzzy subring of R.

Proposition 326 Let A be a fuzzy subring of R and let f be an epimorphism
of R onto a ring R. Then f(A) is a fuzzy subring of R.

Proof. Let u; v 2 R. Then there exist x; y 2 R such that f(x) = u and
f(y) = v since f is surjective. Hence, we obtain successively f(A)(u)^f(A)(v) = W
f(x)=u

A (x)

!
^
 W
f(y)=v

A (y)

!
=

W
f(x)=u;f(y)=v

A (x) ^A (y)

�
W

f(x)=u;f(y)=v

A(x� y) (A is a fuzzy subring of R)

�
W

f(x)�f(y)=u�v
A(x� y) (f is a homomorphism)

=
W

f(z)=u�v
A(z) = f(A)(u� v):

Similarly,
f(A)(uv) � f(A)(u) ^ f(A)(v):
Hence, f(A) is a fuzzy subring of R.
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Proposition 327 Let f be a homomorphism from R to a ring R and let B be
a fuzzy subring of R. Then f�1(B) is a fuzzy subring of R.

Proof. For any x; y 2 R; f�1(B)(xy) = B(f(xy)) = B(f(x)f(y)) � B(f(x)) ^
B(f(y)) = f�1(B)(x) ^ f�1(B)(y): Similarly, f�1(B)(x � y) � f � 1(B)(x) ^
f�1(B)(y). Thus f�1(B) is a fuzzy subring of R.

De�nition 328 A fuzzy subring A of R is called a fuzzy ideal of R if it satis�es
that, for any x; y 2 R, A(xy) � A(x) _A(y).

Clearly, A 2 F (R) is a fuzzy ideal of R i¤ A satis�es that, 8x; y 2 R,
A(x � y) � A(x) ^ A(y) and A(xy) � A(x) _ A(y). If R is commutative, then
a fuzzy subring A of R is a fuzzy ideal i¤ R satis�es that, for any x; y 2 R,
A(xy) � A(x):

Proposition 329 Let A 2 F (R). Then A is a fuzzy ideal of R i¤ A� is an
ideal of R for every � 2 R(A):

Proof. Firstly, suppose that A is a fuzzy ideal of R. Then, A� for � 2 R(A)
is a subring of R. Let x; y 2 A� and z 2 R. Then A(x� y) � A(x) ^A(y) � �
and A(zx) � A(z) _ A(x) � A(x) � �. Hence, x� y 2 A� and zx 2 A�. Thus
A� is an ideal of R.
Conversely, suppose that A� is an ideal of R for every � 2 R(A). Then,

A is a fuzzy subring of R. Let x; y 2 R and � = A(x). Then � 2 R(A) and
x 2 A�. Since A� is an ideal, xy 2 A�. Hence A(xy) � � = A(x): Similarly,
A(xy) � A(y). Therefore, A(xy) � A(x) _ A(y). Thus A is a fuzzy ideal of R.
Particularly, A� = fx j A (x) = A (0)g is an ideal of R if A is a fuzzy ideal of R.

Proposition 330 Let A be a fuzzy ideal of R and let f be an epimorphism of
R onto a ring R . Then f(A) is a fuzzy ideal of R.
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